These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8785310)

  • 1. Wavelength dependence of cell cloning efficiency after optical trapping.
    Liang H; Vu KT; Krishnan P; Trang TC; Shin D; Kimel S; Berns MW
    Biophys J; 1996 Mar; 70(3):1529-33. PubMed ID: 8785310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant cell formation in cells exposed to 740 nm and 760 nm optical traps.
    Liang H; Vu KT; Trang TC; Shin D; Lee YE; Nguyen DC; Tromberg B; Berns MW
    Lasers Surg Med; 1997; 21(2):159-65. PubMed ID: 9261793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges.
    Vorobjev IA; Liang H; Wright WH; Berns MW
    Biophys J; 1993 Feb; 64(2):533-8. PubMed ID: 8457677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser.
    Berns MW; Aist JR; Wright WH; Liang H
    Exp Cell Res; 1992 Feb; 198(2):375-8. PubMed ID: 1729142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser.
    Schneckenburger H; Hendinger A; Sailer R; Gschwend MH; Strauss WS; Bauer M; Schütze K
    J Biomed Opt; 2000 Jan; 5(1):40-4. PubMed ID: 10938764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study of cells by optical trapping and manipulation of living cells using infrared laser beams.
    Ashkin A
    ASGSB Bull; 1991 Jul; 4(2):133-46. PubMed ID: 11537176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap.
    Steubing RW; Cheng S; Wright WH; Numajiri Y; Berns MW
    Cytometry; 1991; 12(6):505-10. PubMed ID: 1764975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser tweezers are sources of two-photon excitation.
    König K
    Cell Mol Biol (Noisy-le-grand); 1998 Jul; 44(5):721-33. PubMed ID: 9764743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical density changes of Gafchromic MD-55 film resulting from laser light exposure at wavelengths of 671 nm and 633 nm.
    Sullivan PR; Hasson BF; Grossman CH; Simpson LD
    Med Phys; 2000 Jan; 27(1):245-51. PubMed ID: 10659764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry.
    Liu Y; Sonek GJ; Berns MW; Tromberg BJ
    Biophys J; 1996 Oct; 71(4):2158-67. PubMed ID: 8889192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant cell formation produced by laser microbeam irradiation of chromatin in Chinese hamster cells.
    Cremer T; Turner A; Liaw LH; Berns MW
    Exp Cell Res; 1981 Jul; 134(1):49-63. PubMed ID: 7195821
    [No Abstract]   [Full Text] [Related]  

  • 12. Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser.
    Chen L; Wang Z; Liu H; Zhuang S; Yu H; Guo L; Lan R; Wang J; Xu X
    Opt Express; 2010 Oct; 18(21):22167-73. PubMed ID: 20941118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses.
    Oehring H; Riemann I; Fischer P; Halbhuber KJ; Konig K
    Scanning; 2000; 22(4):263-70. PubMed ID: 10958394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption.
    König K; Liang H; Berns MW; Tromberg BJ
    Opt Lett; 1996 Jul; 21(14):1090-2. PubMed ID: 19876262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autofluorescence spectroscopy of optically trapped cells.
    König K; Liu Y; Sonek GJ; Berns MW; Tromberg BJ
    Photochem Photobiol; 1995 Nov; 62(5):830-5. PubMed ID: 8570720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-harmonic and sum-frequency generation from optically trapped KTiOPO(4) microscopic particles by use of Nd:YAG and Ti:Al(2)O(3) lasers.
    Sato S; Inaba H
    Opt Lett; 1994 Jul; 19(13):927-9. PubMed ID: 19844490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond optical transfection of cells: viability and efficiency.
    Stevenson D; Agate B; Tsampoula X; Fischer P; Brown CT; Sibbett W; Riches A; Gunn-Moore F; Dholakia K
    Opt Express; 2006 Aug; 14(16):7125-33. PubMed ID: 19529083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 980- and 1064-nm wavelengths for interstitial laser thermotherapy of the liver.
    Nikfarjam M; Malcontenti-Wilson C; Christophi C
    Photomed Laser Surg; 2005 Jun; 23(3):284-8. PubMed ID: 15954816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1).
    Yamada K
    Nihon Seikeigeka Gakkai Zasshi; 1991 Sep; 65(9):787-99. PubMed ID: 1960480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.