These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8785310)

  • 21. High efficiency Nd:YAG ceramic eye-safe laser operating at 1442.8 nm.
    Zhang HN; Chen XH; Wang QP; Zhang XY; Chang J; Gao L; Shen HB; Cong ZH; Liu ZJ; Tao XT; Li P
    Opt Lett; 2013 Aug; 38(16):3075-7. PubMed ID: 24104652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system.
    Ayano S; Wakamoto Y; Yamashita S; Yasuda K
    Biochem Biophys Res Commun; 2006 Nov; 350(3):678-84. PubMed ID: 17027921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical trapping and manipulation of single cells using infrared laser beams.
    Ashkin A; Dziedzic JM; Yamane T
    Nature; 1987 Dec 24-31; 330(6150):769-71. PubMed ID: 3320757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. He-Ne laser (632.8 nm) pre-irradiation gives protection against DNA damage induced by a near-infrared trapping beam.
    Sahu K; Mohanty SK; Gupta PK
    J Biophotonics; 2009 Mar; 2(3):140-4. PubMed ID: 19343694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-wavelength Nd:YAG crystal laser at 1074 and 1112 nm.
    Chen L; Wang Z; Zhuang S; Yu H; Zhao Y; Guo L; Xu X
    Opt Lett; 2011 Jul; 36(13):2554-6. PubMed ID: 21725477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical trapping and manipulation of viruses and bacteria.
    Ashkin A; Dziedzic JM
    Science; 1987 Mar; 235(4795):1517-20. PubMed ID: 3547653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat generation in Nd:YAG at different doping levels.
    Puncken O; Winkelmann L; Frede M; Wessels P; Neumann J; Kracht D
    Appl Opt; 2012 Nov; 51(31):7586-90. PubMed ID: 23128707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring cell survival after extraction of a single subcellular organelle using optical trapping and pulsed-nitrogen laser ablation.
    Shelby JP; Edgar JS; Chiu DT
    Photochem Photobiol; 2005; 81(4):994-1001. PubMed ID: 15850426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear optical microscopy at wavelengths exceeding 1.4 microm using a synchronously pumped femtosecond-pulsed optical parametric oscillator.
    McConnell G
    Phys Med Biol; 2007 Feb; 52(3):717-24. PubMed ID: 17228116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Principles of lasers and biophotonic effects.
    Knappe V; Frank F; Rohde E
    Photomed Laser Surg; 2004 Oct; 22(5):411-7. PubMed ID: 15671714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimal optical trap for bacterial viability.
    Mirsaidov U; Timp W; Timp K; Mir M; Matsudaira P; Timp G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021910. PubMed ID: 18850868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutagenic activity of high-energy 532 nm ultra-short laser pulses.
    Leavitt J; Fatone M; Hestdalen C; Obringer JW; Tillinghast HS
    Radiat Res; 1997 Apr; 147(4):490-4. PubMed ID: 9092930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of photodamage to Escherichia coli in optical traps.
    Neuman KC; Chadd EH; Liou GF; Bergman K; Block SM
    Biophys J; 1999 Nov; 77(5):2856-63. PubMed ID: 10545383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence.
    Leitz G; Fällman E; Tuck S; Axner O
    Biophys J; 2002 Apr; 82(4):2224-31. PubMed ID: 11916877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of combination wavelength (1060-nm and 530-nm) and pulsed Nd:YAG laser for contact laser surgery.
    Liu KR; Peyman GA; Myers JD; Hamlin SA; Katoh N
    Jpn J Ophthalmol; 1989; 33(1):43-56. PubMed ID: 2733255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical tweezers: tethers, wavelengths, and heat.
    Berns MW
    Methods Cell Biol; 2007; 82():457-66. PubMed ID: 17586268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of biophysical properties of skin measured by using non-invasive techniques in the KM mice following 595 nm pulsed dye, 1064 nm Q-Switched Nd:YAG and 1320 nm Nd:YAG laser non-ablative rejuvenation.
    Dang Y; Ren Q; Li W; Yang Q; Zhang J
    Skin Res Technol; 2006 May; 12(2):119-25. PubMed ID: 16626386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superior lipolytic effect of the 1,444 nm Nd:YAG laser: comparison with the 1,064 nm Nd:YAG laser.
    Tark KC; Jung JE; Song SY
    Lasers Surg Med; 2009 Dec; 41(10):721-7. PubMed ID: 20014250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy of three different laser wavelengths for in vitro wound healing.
    Evans DH; Abrahamse H
    Photodermatol Photoimmunol Photomed; 2008 Aug; 24(4):199-210. PubMed ID: 18717961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.