These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 8785325)
1. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds. Molle G; Dugast JY; Spach G; Duclohier H Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325 [TBL] [Abstract][Full Text] [Related]
2. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels. Cosette P; Rebuffat S; Bodo B; Molle G Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493 [TBL] [Abstract][Full Text] [Related]
3. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14. Kaduk C; Dathe M; Bienert M Biochim Biophys Acta; 1998 Aug; 1373(1):137-46. PubMed ID: 9733952 [TBL] [Abstract][Full Text] [Related]
4. The properties of ion channels formed by zervamicins. Balaram P; Krishna K; Sukumar M; Mellor IR; Sansom MS Eur Biophys J; 1992; 21(2):117-28. PubMed ID: 1382967 [TBL] [Abstract][Full Text] [Related]
5. The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide. Jacob J; Duclohier H; Cafiso DS Biophys J; 1999 Mar; 76(3):1367-76. PubMed ID: 10049319 [TBL] [Abstract][Full Text] [Related]
6. Structure-function relationships in helix-bundle channels probed via total chemical synthesis of alamethicin dimers: effects of a Gln7 to Asn7 mutation. Jaikaran DC; Biggin PC; Wenschuh H; Sansom MS; Woolley GA Biochemistry; 1997 Nov; 36(45):13873-81. PubMed ID: 9374865 [TBL] [Abstract][Full Text] [Related]
7. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues. Duclohier H; Molle G; Dugast JY; Spach G Biophys J; 1992 Sep; 63(3):868-73. PubMed ID: 1384742 [TBL] [Abstract][Full Text] [Related]
8. Synthetic analogues of alamethicin: effect of C-terminal residue substitutions and chain length on the ion channel lifetimes. Molle G; Duclohier H; Julien S; Spach G Biochim Biophys Acta; 1991 May; 1064(2):365-9. PubMed ID: 1709813 [TBL] [Abstract][Full Text] [Related]
10. Influence of proline position upon the ion channel activity of alamethicin. Kaduk C; Duclohier H; Dathe M; Wenschuh H; Beyermann M; Molle G; Bienert M Biophys J; 1997 May; 72(5):2151-9. PubMed ID: 9129817 [TBL] [Abstract][Full Text] [Related]
11. Conformational study of a synthetic analogue of alamethicin. Influence of the conformation on ion-channel lifetimes. Brachais L; Davoust D; Molle G Int J Pept Protein Res; 1995 Feb; 45(2):164-72. PubMed ID: 7540163 [TBL] [Abstract][Full Text] [Related]
12. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics. Haris PI; Molle G; Duclohier H Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266 [TBL] [Abstract][Full Text] [Related]
13. Modifications of alamethicin ion channels by substitution of Glu-7 for Gln-7. Asami K; Okazaki T; Nagai Y; Nagaoka Y Biophys J; 2002 Jul; 83(1):219-28. PubMed ID: 12080114 [TBL] [Abstract][Full Text] [Related]
14. Alamethicin-like behaviour of new 18-residue peptaibols, trichorzins PA. Role of the C-terminal amino-alcohol in the ion channel forming activity. Duval D; Cosette P; Rebuffat S; Duclohier H; Bodo B; Molle G Biochim Biophys Acta; 1998 Mar; 1369(2):309-19. PubMed ID: 9518665 [TBL] [Abstract][Full Text] [Related]
15. Ion channel stability and hydrogen bonding. Molecular modelling of channels formed by synthetic alamethicin analogues. Breed J; Kerr ID; Molle G; Duclohier H; Sansom MS Biochim Biophys Acta; 1997 Dec; 1330(2):103-9. PubMed ID: 9408161 [TBL] [Abstract][Full Text] [Related]
16. The barrel-stave model as applied to alamethicin and its analogs reevaluated. Laver DR Biophys J; 1994 Feb; 66(2 Pt 1):355-9. PubMed ID: 7512830 [TBL] [Abstract][Full Text] [Related]
17. Engineering stabilized ion channels: covalent dimers of alamethicin. You S; Peng S; Lien L; Breed J; Sansom MS; Woolley GA Biochemistry; 1996 May; 35(20):6225-32. PubMed ID: 8639562 [TBL] [Abstract][Full Text] [Related]
18. Ferrocenoyl derivatives of alamethicin: redox-sensitive ion channels. Schmitt JD; Sansom MS; Kerr ID; Lunt GG; Eisenthal R Biochemistry; 1997 Feb; 36(5):1115-22. PubMed ID: 9033402 [TBL] [Abstract][Full Text] [Related]
19. Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues. Duclohier H; Wróblewski H J Membr Biol; 2001 Nov; 184(1):1-12. PubMed ID: 11687873 [No Abstract] [Full Text] [Related]
20. Metal-assisted channel stabilization: disposition of a single histidine on the N-terminus of alamethicin yields channels with extraordinarily long lifetimes. Noshiro D; Asami K; Futaki S Biophys J; 2010 May; 98(9):1801-8. PubMed ID: 20441743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]