These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 8785342)

  • 1. Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions.
    Yasuda K; Shindo Y; Ishiwata S
    Biophys J; 1996 Apr; 70(4):1823-9. PubMed ID: 8785342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous oscillation of tension and sarcomere length in skeletal myofibrils. Microscopic measurement and analysis.
    Anazawa T; Yasuda K; Ishiwata S
    Biophys J; 1992 May; 61(5):1099-108. PubMed ID: 1600075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils.
    Okamura N; Ishiwata S
    J Muscle Res Cell Motil; 1988 Apr; 9(2):111-9. PubMed ID: 3138284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basis of passive tension and stiffness in isolated rabbit myofibrils.
    Bartoo ML; Linke WA; Pollack GH
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C266-76. PubMed ID: 9252465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomere overextension reduces stretch-induced tension loss in myofibrils of rabbit psoas.
    Panchangam A; Herzog W
    J Biomech; 2011 Jul; 44(11):2144-9. PubMed ID: 21679954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.
    Horowits R; Maruyama K; Podolsky RJ
    J Cell Biol; 1989 Nov; 109(5):2169-76. PubMed ID: 2808523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connecting filament mechanics in the relaxed sarcomere.
    Nagornyak E; Pollack GH
    J Muscle Res Cell Motil; 2005; 26(6-8):303-6. PubMed ID: 16453159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscopic changes in the lattice structure of striated muscle sarcomeres involved in the mechanism of spontaneous oscillatory contraction (SPOC).
    Kono F; Kawai S; Shimamoto Y; Ishiwata S
    Sci Rep; 2020 Oct; 10(1):16372. PubMed ID: 33009449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual force enhancement in myofibrils and sarcomeres.
    Joumaa V; Leonard TR; Herzog W
    Proc Biol Sci; 2008 Jun; 275(1641):1411-9. PubMed ID: 18348966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments.
    Granzier HL; Irving TC
    Biophys J; 1995 Mar; 68(3):1027-44. PubMed ID: 7756523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auto-oscillations of skinned myocardium correlating with heartbeat.
    Sasaki D; Fujita H; Fukuda N; Kurihara S; Ishiwata S
    J Muscle Res Cell Motil; 2005; 26(2-3):93-101. PubMed ID: 15999228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous oscillatory contraction (SPOC) of sarcomeres in skeletal muscle.
    Ishiwata S; Okamura N; Shimizu H; Anazawa T; Yasuda K
    Adv Biophys; 1991; 27():227-35. PubMed ID: 1755363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force depression in single myofibrils.
    Joumaa V; Herzog W
    J Appl Physiol (1985); 2010 Feb; 108(2):356-62. PubMed ID: 20007852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic analysis of the elastic properties of connectin/titin and nebulin in myofibrils.
    Ishiwata S; Yasuda K; Shindo Y; Fujita H
    Adv Biophys; 1996; 33():135-42. PubMed ID: 8922108
    [No Abstract]   [Full Text] [Related]  

  • 17. Sarcomere shortening in pressure overload hypertrophy.
    Hamrell BB; Hultgren PB
    Fed Proc; 1986 Oct; 45(11):2591-6. PubMed ID: 2944769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcomere length dependence of the force-velocity relation in single frog muscle fibers.
    Granzier HL; Burns DH; Pollack GH
    Biophys J; 1989 Mar; 55(3):499-507. PubMed ID: 2784695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible contribution of titin filaments to the compliant series elastic component in horseshoe crab skeletal muscle fibers.
    Sugi H; Akimoto T; Kobayashi T; Suzuki S; Shimada M
    Adv Exp Med Biol; 2000; 481():371-80; discussion 381-2. PubMed ID: 10987084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+.
    Shimamoto Y; Suzuki M; Ishiwata S
    Biochem Biophys Res Commun; 2008 Feb; 366(1):233-8. PubMed ID: 18061572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.