BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8785343)

  • 1. Steady-state polarization from cylindrically symmetric fluorophores undergoing rapid restricted motion.
    Irving M
    Biophys J; 1996 Apr; 70(4):1830-5. PubMed ID: 8785343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers.
    Dale RE; Hopkins SC; an der Heide UA; Marszałek T; Irving M; Goldman YE
    Biophys J; 1999 Mar; 76(3):1606-18. PubMed ID: 10049341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber.
    Burghardt TP; Ajtai K; Chan DK; Halstead MF; Li J; Zheng Y
    Biophys J; 2007 Sep; 93(6):2226-39. PubMed ID: 17513376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation changes in myosin regulatory light chains following photorelease of ATP in skinned muscle fibers.
    Allen TS; Ling N; Irving M; Goldman YE
    Biophys J; 1996 Apr; 70(4):1847-62. PubMed ID: 8785345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle.
    Ling N; Shrimpton C; Sleep J; Kendrick-Jones J; Irving M
    Biophys J; 1996 Apr; 70(4):1836-46. PubMed ID: 8785344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers.
    Hopkins SC; Sabido-David C; Corrie JE; Irving M; Goldman YE
    Biophys J; 1998 Jun; 74(6):3093-110. PubMed ID: 9635763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state fluorescence polarization studies of the orientation of myosin regulatory light chains in single skeletal muscle fibers using pure isomers of iodoacetamidotetramethylrhodamine.
    Sabido-David C; Brandmeier B; Craik JS; Corrie JE; Trentham DR; Irving M
    Biophys J; 1998 Jun; 74(6):3083-92. PubMed ID: 9635762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of light quenching: effects of fluorescence polarization, intensity, and anisotropy decays.
    Kuśba J; Bogdanov V; Gryczynski I; Lakowicz JR
    Biophys J; 1994 Nov; 67(5):2024-40. PubMed ID: 7858140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridges.
    Bell MG; Dale RE; van der Heide UA; Goldman YE
    Biophys J; 2002 Aug; 83(2):1050-73. PubMed ID: 12124286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maximum entropy analysis of protein orientations using fluorescence polarization data from multiple probes.
    van der Heide UA; Hopkins SC; Goldman YE
    Biophys J; 2000 Apr; 78(4):2138-50. PubMed ID: 10733991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturation effects in polarized fluorescence photobleaching recovery and steady state fluorescence polarization.
    Hellen EH; Burghardt TP
    Biophys J; 1994 Mar; 66(3 Pt 1):891-7. PubMed ID: 8011921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-independent time-resolved fluorescence depolarization from ordered biological assemblies applied to restricted motion of myosin cross-bridges in muscle fibers.
    Burghardt TP; Ajtai K
    Biochemistry; 1986 Jun; 25(11):3469-78. PubMed ID: 3730371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy.
    Blackman SM; Cobb CE; Beth AH; Piston DW
    Biophys J; 1996 Jul; 71(1):194-208. PubMed ID: 8804603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transients of fluorescence polarization in skeletal muscle fibers labeled with rhodamine on the regulatory light chain.
    Allen TS; Sabido-David C; Ling N; Irving M; Goldman YE
    Biophys J; 1995 Apr; 68(4 Suppl):81S-84S; discussion 85S-86S. PubMed ID: 7787113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle.
    Borejdo J; Ushakov DS; Akopova I
    Biophys J; 2002 Jun; 82(6):3150-9. PubMed ID: 12023239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization of fluorescently labeled myosin subfragment-1 fully or partially decorating muscle fibers and myofibrils.
    Andreev OA; Andreeva AL; Borejdo J
    Biophys J; 1993 Sep; 65(3):1027-38. PubMed ID: 8241383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctional rhodamine probes of Myosin regulatory light chain orientation in relaxed skeletal muscle fibers.
    Brack AS; Brandmeier BD; Ferguson RE; Criddle S; Dale RE; Irving M
    Biophys J; 2004 Apr; 86(4):2329-41. PubMed ID: 15041671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring orientation of actin filaments within a cell: orientation of actin in intestinal microvilli.
    Borejdo J; Burlacu S
    Biophys J; 1993 Jul; 65(1):300-9. PubMed ID: 8369437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres.
    Sabido-David C; Hopkins SC; Saraswat LD; Lowey S; Goldman YE; Irving M
    J Mol Biol; 1998 Jun; 279(2):387-402. PubMed ID: 9642045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light quenching of fluorescence: a new method to control the excited state lifetime and orientation of fluorophores.
    Lakowicz JR; Gryczyński I; Kuśba J; Bogdanov V
    Photochem Photobiol; 1994 Dec; 60(6):546-62. PubMed ID: 7870760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.