These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8785348)

  • 1. Calcium regulation of thin filament movement in an in vitro motility assay.
    Homsher E; Kim B; Bobkova A; Tobacman LS
    Biophys J; 1996 Apr; 70(4):1881-92. PubMed ID: 8785348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium regulation of skeletal muscle thin filament motility in vitro.
    Gordon AM; LaMadrid MA; Chen Y; Luo Z; Chase PB
    Biophys J; 1997 Mar; 72(3):1295-307. PubMed ID: 9138575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium.
    Homsher E; Lee DM; Morris C; Pavlov D; Tobacman LS
    J Physiol; 2000 Apr; 524 Pt 1(Pt 1):233-43. PubMed ID: 10747195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform.
    Schoffstall B; Brunet NM; Williams S; Miller VF; Barnes AT; Wang F; Compton LA; McFadden LA; Taylor DW; Seavy M; Dhanarajan R; Chase PB
    J Physiol; 2006 Dec; 577(Pt 3):935-44. PubMed ID: 17008370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myosin binding-induced cooperative activation of the thin filament in cardiac myocytes and skeletal muscle fibers.
    Metzger JM
    Biophys J; 1995 Apr; 68(4):1430-42. PubMed ID: 7787029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap.
    Saito K; Aoki T; Aoki T; Yanagida T
    Biophys J; 1994 Mar; 66(3 Pt 1):769-77. PubMed ID: 8011909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro motility analysis of actin-tropomyosin regulation by troponin and calcium. The thin filament is switched as a single cooperative unit.
    Fraser ID; Marston SB
    J Biol Chem; 1995 Apr; 270(14):7836-41. PubMed ID: 7713874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments.
    Bing W; Knott A; Marston SB
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):693-9. PubMed ID: 10970781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assessment of the mechanical activity of cardiac isomyosins V1 and V3 by an in vitro motility assay with regulated thin filaments].
    Nikitina LV; Kopylova GV; Shchepkin DV; Katsnel'son LB
    Biofizika; 2008; 53(6):956-61. PubMed ID: 19137677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay.
    Suzuki N; Miyata H; Ishiwata S; Kinosita K
    Biophys J; 1996 Jan; 70(1):401-8. PubMed ID: 8770216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-triggered movement of regulated actin in vitro. A fluorescence microscopy study.
    Honda H; Asakura S
    J Mol Biol; 1989 Feb; 205(4):677-83. PubMed ID: 2522555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The in vitro motility assay to study the calcium-mechanical relationship in skeletal and cardiac muscles].
    Kopylova GV; Katsnel'son LB; Ovsiannikov DA; Bershitskiĭ SIu; Nikitina LV
    Biofizika; 2006; 51(5):781-5. PubMed ID: 17131812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle.
    Schoffstall B; LaBarbera VA; Brunet NM; Gavino BJ; Herring L; Heshmati S; Kraft BH; Inchausti V; Meyer NL; Moonoo D; Takeda AK; Chase PB
    DNA Cell Biol; 2011 Sep; 30(9):653-9. PubMed ID: 21438758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of actin away from the center of reconstituted rabbit myosin filament is slower than in the opposite direction.
    Yamada A; Wakabayashi T
    Biophys J; 1993 Feb; 64(2):565-9. PubMed ID: 8457681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of calponin on the rate of actin filament movement].
    Borovikov IuS; Horiuchi KY; Chacko S
    Tsitologiia; 1996; 38(3):351-4. PubMed ID: 8768102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ regulation of rabbit skeletal muscle thin filament sliding: role of cross-bridge number.
    Liang B; Chen Y; Wang CK; Luo Z; Regnier M; Gordon AM; Chase PB
    Biophys J; 2003 Sep; 85(3):1775-86. PubMed ID: 12944292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal regulatory proteins enhance thin filament sliding speed and force by skeletal HMM.
    Clemmens EW; Regnier M
    J Muscle Res Cell Motil; 2004; 25(7):515-25. PubMed ID: 15711882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional image reconstruction of reconstituted smooth muscle thin filaments: effects of caldesmon.
    Hodgkinson JL; Marston SB; Craig R; Vibert P; Lehman W
    Biophys J; 1997 Jun; 72(6):2398-404. PubMed ID: 9168017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are actin filaments moving under unloaded conditions in the in vitro motility assay?
    Haeberle JR; Hemric ME
    Biophys J; 1995 Apr; 68(4 Suppl):306S-310S; discussion 310S-311S. PubMed ID: 7787096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.