These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8786581)

  • 1. Inhibitory action of palytoxin on ascorbic acid transport into cultured bovine adrenal chromaffin cells.
    Morita K; Teraoka K; Oka M; Levine M
    J Pharmacol Exp Ther; 1996 Mar; 276(3):996-1001. PubMed ID: 8786581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrodotoxin-insensitive Na+ channel activator palytoxin inhibits tyrosine uptake into cultured bovine adrenal chromaffin cells.
    Morita K; Teraoka K; Azuma M; Oka M; Hamano S
    Mol Pharmacol; 1991 Jul; 40(1):112-7. PubMed ID: 1677449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of palytoxin-induced catecholamine secretion from cultured bovine adrenal chromaffin cells. Effects of Na(+)- and Ca(2+)-channel blockers.
    Yoshizumi M; Nakanishi A; Houchi H; Morita K; Katoh I; Oka M
    Biochem Pharmacol; 1991 Jun; 42(1):17-23. PubMed ID: 1676886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cytoskeleton-disrupting agents on tyrosine transport into cultured bovine adrenal chromaffin cells.
    Morita K; Teraoka K; Oka M; Hamano S
    Biochem Int; 1989 May; 18(5):991-8. PubMed ID: 2783150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of relationship between gamma-glutamyl transpeptidase and tyrosine transport in cultured bovine adrenal chromaffin cells.
    Morita K; Teraoka K; Hamano S; Oka M
    Biochem Mol Biol Int; 1994 May; 33(1):99-105. PubMed ID: 7915926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of catecholamine transport into chromaffin granule ghosts isolated from bovine adrenal glands by phenytoin.
    Deupree JD; Downs DA; Laposky JE; Hitchcock JJ
    J Pharmacol Exp Ther; 1984 Jul; 230(1):171-4. PubMed ID: 6146705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of palytoxin-induced Na+ influx into cultured bovine adrenal chromaffin cells: possible involvement of Na+/H+ exchange system.
    Yoshizumi M; Houchi H; Ishimura Y; Masuda Y; Morita K; Oka M
    Neurosci Lett; 1991 Sep; 130(1):103-6. PubMed ID: 1684231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium inhibits function of voltage-dependent sodium channels and catecholamine secretion independent of glycogen synthase kinase-3 in adrenal chromaffin cells.
    Yanagita T; Maruta T; Uezono Y; Satoh S; Yoshikawa N; Nemoto T; Kobayashi H; Wada A
    Neuropharmacology; 2007 Dec; 53(7):881-9. PubMed ID: 17950380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanism of ascorbic acid transport in the aqueous humor].
    Helbig H; Korbmacher C; Wiederholt M
    Fortschr Ophthalmol; 1990; 87(4):421-4. PubMed ID: 2210577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory mechanism of calcium efflux from cultured bovine adrenal chromaffin cells induced by extracellular ATP.
    Houchi H; Okuno M; Yoshizumi M; Oka M
    Neurosci Lett; 1995 Oct; 198(3):177-80. PubMed ID: 8552315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palytoxin-induced effects on partial reactions of the Na,K-ATPase.
    Harmel N; Apell HJ
    J Gen Physiol; 2006 Jul; 128(1):103-18. PubMed ID: 16801384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrocortisone inhibition of ascorbic acid transport by chromaffin cells.
    Levine MA; Pollard HB
    FEBS Lett; 1983 Jul; 158(1):134-8. PubMed ID: 6862031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC
    Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of norepinephrine biosynthesis by ascorbic acid in cultured bovine chromaffin cells.
    Levine M; Morita K; Pollard H
    J Biol Chem; 1985 Oct; 260(24):12942-7. PubMed ID: 3932336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascorbic acid transport by isolated bovine adrenal medullary cells.
    Minakuchi K
    Tokushima J Exp Med; 1985 Jun; 32(1-2):9-15. PubMed ID: 4095700
    [No Abstract]   [Full Text] [Related]  

  • 16. Up-regulation of cell surface sodium channels by cyclosporin A, FK506, and rapamycin in adrenal chromaffin cells.
    Shiraishi S; Yanagita T; Kobayashi H; Uezono Y; Yokoo H; Minami SI; Takasaki M; Wada A
    J Pharmacol Exp Ther; 2001 May; 297(2):657-65. PubMed ID: 11303055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin.
    Vale C; Alfonso A; Suñol C; Vieytes MR; Botana LM
    J Neurosci Res; 2006 Jun; 83(8):1393-406. PubMed ID: 16547972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional distribution of Ca2+-coupled P2 purinergic receptors among adrenergic and noradrenergic bovine adrenal chromaffin cells.
    Tomé AR; Castro E; Santos RM; Rosário LM
    BMC Neurosci; 2007 Jun; 8():39. PubMed ID: 17570839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different contributions of voltage-sensitive Ca2+ channels to histamine-induced catecholamine release and tyrosine hydroxylase activation in bovine adrenal chromaffin cells.
    O'Farrell M; Marley PD
    Cell Calcium; 1999 Mar; 25(3):209-17. PubMed ID: 10378082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbic acid transport and distribution in human B lymphocytes.
    Bergsten P; Yu R; Kehrl J; Levine M
    Arch Biochem Biophys; 1995 Feb; 317(1):208-14. PubMed ID: 7872786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.