These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 8786678)
21. An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng./ml. or less. Zlotta AR; Remzi M; Snow PB; Schulman CC; Marberger M; Djavan B J Urol; 2003 May; 169(5):1724-8. PubMed ID: 12686818 [TBL] [Abstract][Full Text] [Related]
22. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm. Arab Chamjangali M; Beglari M; Bagherian G J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867 [TBL] [Abstract][Full Text] [Related]
23. Physiologically based approaches towards the prediction of pharmacokinetics: in vitro-in vivo extrapolation. De Buck SS; Mackie CE Expert Opin Drug Metab Toxicol; 2007 Dec; 3(6):865-78. PubMed ID: 18028030 [TBL] [Abstract][Full Text] [Related]
24. Prediction of siRNA knockdown efficiency using artificial neural network models. Ge G; Wong GW; Luo B Biochem Biophys Res Commun; 2005 Oct; 336(2):723-8. PubMed ID: 16153609 [TBL] [Abstract][Full Text] [Related]
25. Artificial neural networks analysis used to evaluate the molecular interactions between selected drugs and human alpha1-acid glycoprotein. Buciński A; Wnuk M; Goryński K; Giza A; Kochańczyk J; Nowaczyk A; Baczek T; Nasal A J Pharm Biomed Anal; 2009 Nov; 50(4):591-6. PubMed ID: 19117712 [TBL] [Abstract][Full Text] [Related]
26. Neural network approach to the segmentation and classification of dynamic magnetic resonance images of the breast: comparison with empiric and quantitative kinetic parameters. Szabó BK; Aspelin P; Wiberg MK Acad Radiol; 2004 Dec; 11(12):1344-54. PubMed ID: 15596372 [TBL] [Abstract][Full Text] [Related]
27. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. Obach RS; Baxter JG; Liston TE; Silber BM; Jones BC; MacIntyre F; Rance DJ; Wastall P J Pharmacol Exp Ther; 1997 Oct; 283(1):46-58. PubMed ID: 9336307 [TBL] [Abstract][Full Text] [Related]
28. Design of a recognition system to predict movement during anesthesia. Sharma A; Roy RJ IEEE Trans Biomed Eng; 1997 Jun; 44(6):505-11. PubMed ID: 9151484 [TBL] [Abstract][Full Text] [Related]
29. A prediction model of occupational manganese exposure based on artificial neural network. Li YN; Luo FT; Jiang YM; Lu YR; Huang JL; Zhang ZB Toxicol Mech Methods; 2009 Jun; 19(5):337-45. PubMed ID: 19778209 [TBL] [Abstract][Full Text] [Related]
30. Lower extremity joint torque predicted by using artificial neural network during vertical jump. Liu Y; Shih SM; Tian SL; Zhong YJ; Li L J Biomech; 2009 May; 42(7):906-11. PubMed ID: 19261287 [TBL] [Abstract][Full Text] [Related]
31. Application of serum protein fingerprinting coupled with artificial neural network model in diagnosis of hepatocellular carcinoma. Wang JX; Zhang B; Yu JK; Liu J; Yang MQ; Zheng S Chin Med J (Engl); 2005 Aug; 118(15):1278-84. PubMed ID: 16117882 [TBL] [Abstract][Full Text] [Related]
32. A neural network based prediction of octanol-water partition coefficients using atomic5 fragmental descriptors. Molnár L; Keseru GM; Papp A; Gulyás Z; Darvas F Bioorg Med Chem Lett; 2004 Feb; 14(4):851-3. PubMed ID: 15012980 [TBL] [Abstract][Full Text] [Related]
34. Correlation-based prediction of tissue-to-plasma partition coefficients using readily available input parameters. Yun YE; Edginton AN Xenobiotica; 2013 Oct; 43(10):839-52. PubMed ID: 23418669 [TBL] [Abstract][Full Text] [Related]
35. Extrapolation of human pharmacokinetic parameters from rat, dog, and monkey data: Molecular properties associated with extrapolative success or failure. Jolivette LJ; Ward KW J Pharm Sci; 2005 Jul; 94(7):1467-83. PubMed ID: 15920768 [TBL] [Abstract][Full Text] [Related]
36. Predicting the standard enthalpy (deltaH0f) and entropy (S0) of alkanes by artificial neural networks. Yan A; Chen X; Zhang R; Liu M; Hu Z; Fan BT SAR QSAR Environ Res; 2000; 11(3-4):235-44. PubMed ID: 10969873 [TBL] [Abstract][Full Text] [Related]
37. [Artificial neural network applied for spectral overlap interference correction in ICP-AES]. Zhang Z; Liu S; Zeng X Guang Pu Xue Yu Guang Pu Fen Xi; 1997 Oct; 17(5):77-81. PubMed ID: 15810366 [TBL] [Abstract][Full Text] [Related]
38. Tissue-to-blood distribution coefficients in the rat: utility for estimation of the volume of distribution in man. Paixão P; Aniceto N; Gouveia LF; Morais JA Eur J Pharm Sci; 2013 Nov; 50(3-4):526-43. PubMed ID: 23994235 [TBL] [Abstract][Full Text] [Related]
39. Prediction of ACNU plasma concentration-time profiles in humans by animal scale-up. Mitsuhashi Y; Sugiyama Y; Ozawa S; Nitanai T; Sasahara K; Nakamura K; Tanaka M; Nishimura T; Inaba M; Kobayashi T Cancer Chemother Pharmacol; 1990; 27(1):20-6. PubMed ID: 2245489 [TBL] [Abstract][Full Text] [Related]
40. Comprehensive assessment of human pharmacokinetic prediction based on in vivo animal pharmacokinetic data, part 1: volume of distribution at steady state. Lombardo F; Waters NJ; Argikar UA; Dennehy MK; Zhan J; Gunduz M; Harriman SP; Berellini G; Rajlic IL; Obach RS J Clin Pharmacol; 2013 Feb; 53(2):167-77. PubMed ID: 23436262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]