These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8786800)

  • 1. Age-related learning and memory deficits in odor-reward association in rats.
    Roman FS; Alescio-Lautier B; Soumireu-Mourat B
    Neurobiol Aging; 1996; 17(1):31-40. PubMed ID: 8786800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of muscarinic receptor blockade in prelimbic cortex on acquisition and memory formation of an odor-reward task.
    Carballo-Márquez A; Vale-Martínez A; Guillazo-Blanch G; Torras-Garcia M; Boix-Trelis N; Martí-Nicolovius M
    Learn Mem; 2007 Sep; 14(9):616-24. PubMed ID: 17848501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose regulation of memory for reward reduction in young and aged rats.
    Salinas JA; Gold PE
    Neurobiol Aging; 2005 Jan; 26(1):45-52. PubMed ID: 15585345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-trial odor-reward association: a form of event memory not dependent on hippocampal function.
    Wood ER; Agster KM; Eichenbaum H
    Behav Neurosci; 2004 Jun; 118(3):526-39. PubMed ID: 15174930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficits across multiple cognitive domains in a subset of aged Fischer 344 rats.
    LaSarge CL; Montgomery KS; Tucker C; Slaton GS; Griffith WH; Setlow B; Bizon JL
    Neurobiol Aging; 2007 Jun; 28(6):928-36. PubMed ID: 16806587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning deficits in an odor reward-task induced by parafascicular thalamic lesions are ameliorated by pretraining D-cycloserine in the prelimbic cortex.
    Villarejo-Rodríguez I; Boadas-Vaello P; Portero-Tresserra M; Vale-Martínez A; Martí-Nicolovius M; Guillazo-Blanch G
    Behav Brain Res; 2013 Feb; 238():289-92. PubMed ID: 23124092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of CA1 in the acquisition of an object-trace-odor paired associate task.
    Kesner RP; Hunsaker MR; Gilbert PE
    Behav Neurosci; 2005 Jun; 119(3):781-6. PubMed ID: 15998199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memory is differently impaired during aging according to the learning tasks in the rat.
    Dardou D; Datiche F; Cattarelli M
    Behav Brain Res; 2008 Dec; 194(2):193-200. PubMed ID: 18692096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttraining ablation of adult-generated olfactory granule cells degrades odor-reward memories.
    Arruda-Carvalho M; Akers KG; Guskjolen A; Sakaguchi M; Josselyn SA; Frankland PW
    J Neurosci; 2014 Nov; 34(47):15793-803. PubMed ID: 25411506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odor-reward learning and enrichment have similar effects on odor perception.
    Escanilla O; Mandairon N; Linster C
    Physiol Behav; 2008 Jul; 94(4):621-6. PubMed ID: 18455204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in associative learning for olfactory and visual stimuli in rodents.
    Gilbert PE; Pirogovsky E; Brushfield AM; Luu TT; Tolentino JC; Renteria AF
    Ann N Y Acad Sci; 2009 Jul; 1170():718-24. PubMed ID: 19686218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconsolidation after remembering an odor-reward association requires NMDA receptors.
    Torras-Garcia M; Lelong J; Tronel S; Sara SJ
    Learn Mem; 2005; 12(1):18-22. PubMed ID: 15647596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of parafascicular excitotoxic lesions on two-way active avoidance and odor-discrimination.
    Quiroz-Padilla MF; Guillazo-Blanch G; Vale-Martínez A; Torras-García M; Martí-Nicolovius M
    Neurobiol Learn Mem; 2007 Sep; 88(2):198-207. PubMed ID: 17631394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-cycloserine in the basolateral amygdala prevents extinction and enhances reconsolidation of odor-reward associative learning in rats.
    Portero-Tresserra M; Martí-Nicolovius M; Guillazo-Blanch G; Boadas-Vaello P; Vale-Martínez A
    Neurobiol Learn Mem; 2013 Feb; 100():1-11. PubMed ID: 23200640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning and memory of cue-reward association meaning by modifications of synaptic efficacy in dentate gyrus and piriform cortex.
    Truchet B; Chaillan FA; Soumireu-Mourat B; Roman FS
    Hippocampus; 2002; 12(5):600-8. PubMed ID: 12440576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information coding in the rodent prefrontal cortex. II. Ensemble activity in orbitofrontal cortex.
    Schoenbaum G; Eichenbaum H
    J Neurophysiol; 1995 Aug; 74(2):751-62. PubMed ID: 7472379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odor learning, recall, and recognition memory in young and elderly adults.
    Murphy C; Nordin S; Acosta L
    Neuropsychology; 1997 Jan; 11(1):126-37. PubMed ID: 9055276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Memory representation within the parahippocampal region.
    Young BJ; Otto T; Fox GD; Eichenbaum H
    J Neurosci; 1997 Jul; 17(13):5183-95. PubMed ID: 9185556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consolidation of memory for odor-reward association: beta-adrenergic receptor involvement in the late phase.
    Sara SJ; Roullet P; Przybyslawski J
    Learn Mem; 1999; 6(2):88-96. PubMed ID: 10327234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of excitotoxic lesions in the ventral striatopallidal--thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response.
    Ferry AT; Lu XC; Price JL
    Exp Brain Res; 2000 Apr; 131(3):320-35. PubMed ID: 10789947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.