These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8787771)

  • 1. A novel form of migration of glial precursors.
    Orentas DM; Miller RH
    Glia; 1996 Jan; 16(1):27-39. PubMed ID: 8787771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord.
    Fok-Seang J; Miller RH
    J Neurosci Res; 1994 Feb; 37(2):219-35. PubMed ID: 8151730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astrocyte precursors in neonatal rat spinal cord cultures.
    Fok-Seang J; Miller RH
    J Neurosci; 1992 Jul; 12(7):2751-64. PubMed ID: 1613556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord.
    Noll E; Miller RH
    Development; 1993 Jun; 118(2):563-73. PubMed ID: 8223279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proliferation and migration of glial precursor cells in the developing rat spinal cord.
    McMahon SS; McDermott KW
    J Neurocytol; 2001; 30(9-10):821-8. PubMed ID: 12165672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function.
    Gregori N; Pröschel C; Noble M; Mayer-Pröschel M
    J Neurosci; 2002 Jan; 22(1):248-56. PubMed ID: 11756508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors.
    Hirano M; Goldman JE
    J Neurosci Res; 1988; 21(2-4):155-67. PubMed ID: 3216418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord.
    Lepore AC; Fischer I
    Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.
    Johnson CD; D'Amato AR; Puhl DL; Wich DM; Vesperman A; Gilbert RJ
    Biomed Mater; 2018 Jun; 13(5):054101. PubMed ID: 29762127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains.
    Pringle NP; Yu WP; Howell M; Colvin JS; Ornitz DM; Richardson WD
    Development; 2003 Jan; 130(1):93-102. PubMed ID: 12441294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord oligodendrocytes develop from a limited number of migratory highly proliferative precursors.
    Miller RH; Payne J; Milner L; Zhang H; Orentas DM
    J Neurosci Res; 1997 Oct; 50(2):157-68. PubMed ID: 9373026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of BMPs in controlling the spatial and temporal origin of GFAP astrocytes in the embryonic spinal cord.
    Agius E; Decker Y; Soukkarieh C; Soula C; Cochard P
    Dev Biol; 2010 Aug; 344(2):611-20. PubMed ID: 20488175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional potential for oligodendrocyte generation in the rodent embryonic spinal cord following exposure to EGF and FGF-2.
    Chandran S; Svendsen C; Compston A; Scolding N
    Glia; 1998 Dec; 24(4):382-9. PubMed ID: 9814818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord.
    Warf BC; Fok-Seang J; Miller RH
    J Neurosci; 1991 Aug; 11(8):2477-88. PubMed ID: 1869925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.
    Chvátal A; Andĕrová M; Ziak D; Orkand RK; Syková E
    Neurosci Res; 2001 May; 40(1):23-35. PubMed ID: 11311402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental appearance, antigenic profile, and proliferation of glial cells of the human embryonic spinal cord: an immunocytochemical study using dissociated cultured cells.
    Aloisi F; Giampaolo A; Russo G; Peschle C; Levi G
    Glia; 1992; 5(3):171-81. PubMed ID: 1375191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spatial and temporal arrangement of the radial glial scaffold suggests a role in axon tract formation in the developing spinal cord.
    Barry DS; Pakan JM; O'Keeffe GW; McDermott KW
    J Anat; 2013 Feb; 222(2):203-13. PubMed ID: 23121514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional specialization of the radial glial cells of the adult frog spinal cord.
    Miller RH; Liuzzi FJ
    J Neurocytol; 1986 Apr; 15(2):187-96. PubMed ID: 3522809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendrocyte-spinal cord explant co-culture: an in vitro model for the study of myelination.
    Chen Z; Ma Z; Wang Y; Li Y; Lü H; Fu S; Hang Q; Lu PH
    Brain Res; 2010 Jan; 1309():9-18. PubMed ID: 19879858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astrocyte activation and fibrous gliosis: glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue.
    Eng LF; Reier PJ; Houle JD
    Prog Brain Res; 1987; 71():439-55. PubMed ID: 3588961
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.