BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8787817)

  • 1. Sleep increase after immobilization stress: role of the noradrenergic locus coeruleus system in the rat.
    Gonzalez MM; Debilly G; Valatx JL; Jouvet M
    Neurosci Lett; 1995 Dec; 202(1-2):5-8. PubMed ID: 8787817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the locus coeruleus in the sleep rebound following two different sleep deprivation methods in the rat.
    González MM; Valatx JL; Debilly G
    Brain Res; 1996 Nov; 740(1-2):215-26. PubMed ID: 8973817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of noradrenergic denervation of the amygdala upon recovery after sleep deprivation in the rat.
    Charifi C; Paut-Pagano L; Debilly G; Cespuglio R; Jouvet M; Valatx JL
    Neurosci Lett; 2000 Jun; 287(1):41-4. PubMed ID: 10841986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noradrenaline neurotoxin DSP-4 effects on sleep and brain temperature in the rat.
    González MM; Debilly G; Valatx JL
    Neurosci Lett; 1998 May; 248(2):93-6. PubMed ID: 9654350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central noradrenergic lesion induced by DSP-4 impairs the acquisition of avoidance reactions and prevents molecular changes in the amygdala.
    Radwanska K; Nikolaev E; Kaczmarek L
    Neurobiol Learn Mem; 2010 Oct; 94(3):303-11. PubMed ID: 20650329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of noradrenergic denervation of medial prefrontal cortex and dentate gyrus on recovery after sleep deprivation in the rat.
    Charifi C; Debilly G; Paut-Pagano L; Cespuglio R; Valatx JL
    Neurosci Lett; 2001 Sep; 311(2):113-6. PubMed ID: 11567791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective effects of DSP-4 on locus coeruleus axons: are there pharmacologically different types of noradrenergic axons in the central nervous system?
    Fritschy JM; Grzanna R
    Prog Brain Res; 1991; 88():257-68. PubMed ID: 1726027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian regulation of arousal: role of the noradrenergic locus coeruleus system and light exposure.
    González MM; Aston-Jones G
    Sleep; 2006 Oct; 29(10):1327-36. PubMed ID: 17068987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesions to terminals of noradrenergic locus coeruleus neurones do not inhibit opiate withdrawal behaviour in rats.
    Chieng B; Christie MJ
    Neurosci Lett; 1995 Feb; 186(1):37-40. PubMed ID: 7540267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of ascending noradrenergic projections by residual locus coeruleus neurons: compensatory response to neurotoxin-induced cell death in the adult rat brain.
    Fritschy JM; Grzanna R
    J Comp Neurol; 1992 Jul; 321(3):421-41. PubMed ID: 1506478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) has differential efficacy for causing central noradrenergic lesions in two different rat strains: comparison between Long-Evans and Sprague-Dawley rats.
    Schuerger RJ; Balaban CD
    J Neurosci Methods; 1995 May; 58(1-2):95-101. PubMed ID: 7475238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals.
    Fritschy JM; Grzanna R
    Neuroscience; 1989; 30(1):181-97. PubMed ID: 2747911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noradrenergic inputs from locus coeruleus to posterior ventral tegmental area are essential to support ethanol reinforcement.
    Shelkar GP; Kumar S; Singru PS; Subhedar NK; Kokare DM
    Addict Biol; 2017 Mar; 22(2):291-302. PubMed ID: 26549324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of the locus coeruleus-norepinephrine system in the emergence of defeat-induced inflammatory priming.
    Finnell JE; Moffitt CM; Hesser LA; Harrington E; Melson MN; Wood CS; Wood SK
    Brain Behav Immun; 2019 Jul; 79():102-113. PubMed ID: 30707932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that 3,3',5-triiodothyronine is concentrated in and delivered from the locus coeruleus to its noradrenergic targets via anterograde axonal transport.
    Gordon JT; Kaminski DM; Rozanov CB; Dratman MB
    Neuroscience; 1999; 93(3):943-54. PubMed ID: 10473259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral and neurochemical effects of noradrenergic depletions with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine in 6-hydroxydopamine-induced rat model of Parkinson's disease.
    Srinivasan J; Schmidt WJ
    Behav Brain Res; 2004 May; 151(1-2):191-9. PubMed ID: 15084435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional recovery of locus coeruleus noradrenergic neurons after DSP-4 lesion: effects on dopamine levels and neuroleptic induced-parkinsonian symptoms in rats.
    Srinivasan J; Schmidt WJ
    J Neural Transm (Vienna); 2004 Jan; 111(1):13-26. PubMed ID: 14714212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of noradrenergic axons to systemically administered DSP-4 in the rat: an immunohistochemical study using antibodies to noradrenaline and dopamine-beta-hydroxylase.
    Fritschy JM; Geffard M; Grzanna R
    J Chem Neuroanat; 1990; 3(4):309-21. PubMed ID: 2204356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotection by R(-)-deprenyl and N-2-hexyl-N-methylpropargylamine on DSP-4, a neurotoxin, induced degeneration of noradrenergic neurons in the rat locus coeruleus.
    Zhang X; Zuo DM; Yu PH
    Neurosci Lett; 1995 Feb; 186(1):45-8. PubMed ID: 7540268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A damage to locus coeruleus neurons converts sporadic seizures into self-sustaining limbic status epilepticus.
    Giorgi FS; Ferrucci M; Lazzeri G; Pizzanelli C; Lenzi P; Alessandrl MG; Murri L; Fornai F
    Eur J Neurosci; 2003 Jun; 17(12):2593-601. PubMed ID: 12823466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.