These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8787826)

  • 21. Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia.
    López-López JR; González C; Pérez-García MT
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):429-41. PubMed ID: 9080372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voltage-dependent ionic channels in differentiating neural precursor cells collected from adult mouse brains six hours post-mortem.
    Bellardita C; Bolzoni F; Sorosina M; Marfia G; Carelli S; Gorio A; Formenti A
    J Neurosci Res; 2012 Apr; 90(4):751-8. PubMed ID: 22183987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of pHi and pHe on membrane currents recorded with the perforated-patch method from cultured chemoreceptors of the rat carotid body.
    Stea A; Alexander SA; Nurse CA
    Brain Res; 1991 Dec; 567(1):83-90. PubMed ID: 1815832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The activity of cAMP-dependent protein kinase is required at a posttranslational level for induction of voltage-dependent sodium channels by peptide growth factors in PC12 cells.
    Ginty DD; Fanger GR; Wagner JA; Maue RA
    J Cell Biol; 1992 Mar; 116(6):1465-73. PubMed ID: 1311713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons.
    Zhang YH; Vasko MR; Nicol GD
    J Physiol; 2002 Oct; 544(2):385-402. PubMed ID: 12381813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differentiation of ionic currents in CNS progenitor cells: dependence upon substrate attachment and epidermal growth factor.
    Feldman DH; Thinschmidt JS; Peel AL; Papke RL; Reier PJ
    Exp Neurol; 1996 Aug; 140(2):206-17. PubMed ID: 8690063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. General pharmacology of recombinant human basic fibroblast growth factor.
    Okumura M; Yajima M; Nishimura T; Ikeda H; Nishimori T
    Arzneimittelforschung; 1996 Jul; 46(7):727-39. PubMed ID: 8842346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustained calcium influx activated by basic fibroblast growth factor in Balb-c 3T3 fibroblasts.
    Munaron L; Distasi C; Carabelli V; Baccino FM; Bonelli G; Lovisolo D
    J Physiol; 1995 May; 484 ( Pt 3)(Pt 3):557-66. PubMed ID: 7623276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that 5-HT stimulates intracellular Ca
    Murali S; Zhang M; Nurse CA
    J Physiol; 2017 Jul; 595(13):4261-4277. PubMed ID: 28332205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitogenic and anti-proliferative signals for neural crest cells and the neurogenic action of TGF-beta1.
    Zhang JM; Hoffmann R; Sieber-Blum M
    Dev Dyn; 1997 Mar; 208(3):375-86. PubMed ID: 9056641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation.
    Frödin M; Gammeltoft S
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1771-5. PubMed ID: 8127879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An important functional role of persistent Na+ current in carotid body hypoxia transduction.
    Faustino EV; Donnelly DF
    J Appl Physiol (1985); 2006 Oct; 101(4):1076-84. PubMed ID: 16778007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blockade of Ca2+-activated K+ channels inhibits proliferation of human endothelial cells induced by basic fibroblast growth factor.
    Wiecha J; Münz B; Wu Y; Noll T; Tillmanns H; Waldecker B
    J Vasc Res; 1998; 35(5):363-71. PubMed ID: 9789117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of basic fibroblast growth factor on acetylcholine receptors in cultured muscle cells.
    Dai Z; Peng HB
    Neurosci Lett; 1992 Sep; 144(1-2):14-8. PubMed ID: 1331909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does adenosine stimulate rat carotid body chemoreceptors?
    McQueen DS
    Adv Exp Med Biol; 1993; 337():289-93. PubMed ID: 8109411
    [No Abstract]   [Full Text] [Related]  

  • 36. Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit.
    Fu XW; Nurse CA; Wang YT; Cutz E
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):139-50. PubMed ID: 9831722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presynaptic modulation of rat arterial chemoreceptor function by 5-HT: role of K+ channel inhibition via protein kinase C.
    Zhang M; Fearon IM; Zhong H; Nurse CA
    J Physiol; 2003 Sep; 551(Pt 3):825-42. PubMed ID: 12826651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage-activated ionic currents in differentiating rat cerebellar granule neurons cultured from the external germinal layer.
    Stewart RR; Bossu JL; Muzet M; Dupont JL; Feltz A
    J Neurobiol; 1995 Dec; 28(4):419-32. PubMed ID: 8592103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GDNF and NGF reverse changes in repriming of TTX-sensitive Na(+) currents following axotomy of dorsal root ganglion neurons.
    Leffler A; Cummins TR; Dib-Hajj SD; Hormuzdiar WN; Black JA; Waxman SG
    J Neurophysiol; 2002 Aug; 88(2):650-8. PubMed ID: 12163518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.