These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8787845)

  • 1. Time course of loudness in tone patterns is automatically represented by the human brain.
    Schröger E; Tervaniemi M; Näätänen R
    Neurosci Lett; 1995 Dec; 202(1-2):117-20. PubMed ID: 8787845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of large-scale memory organization in the mismatch negativity event-related brain potential.
    Winkler I; Schröger E; Cowan N
    J Cogn Neurosci; 2001 Jan; 13(1):59-71. PubMed ID: 11224909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do perceived loudness cues contribute to duration mismatch negativity (MMN)?
    Todd J; Michie PT
    Neuroreport; 2000 Nov; 11(17):3771-4. PubMed ID: 11117488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preattentive memory-based comparison of sound intensity.
    Jacobsen T; Horenkamp T; Schröger E
    Audiol Neurootol; 2003; 8(6):338-46. PubMed ID: 14566104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loudness summation and the mismatch negativity event-related brain potential in humans.
    Oceák A; Winkler I; Sussman E; Alho K
    Psychophysiology; 2006 Jan; 43(1):13-20. PubMed ID: 16629681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential grouping of tone sequence as reflected by the mismatch negativity.
    Kanoh S; Futami R; Hoshimiya N
    Biol Cybern; 2004 Dec; 91(6):388-95. PubMed ID: 15597177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch negativity to changes in a continuous tone with regularly varying frequencies.
    Schröger E; Paavilainen P; Näätänen R
    Electroencephalogr Clin Neurophysiol; 1994 Mar; 92(2):140-7. PubMed ID: 7511511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binaural information can converge in abstract memory traces.
    Paavilainen P; Jaramillo M; Näätänen R
    Psychophysiology; 1998 Sep; 35(5):483-7. PubMed ID: 9715092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preattentive periodicity detection in auditory patterns as governed by time and intensity information.
    Schröger E; Tervaniemi M; Wolff C; Näätänen RN
    Brain Res Cogn Brain Res; 1996 Sep; 4(2):145-8. PubMed ID: 8883927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory cortical onset responses revisited. II. Response strength.
    Heil P
    J Neurophysiol; 1997 May; 77(5):2642-60. PubMed ID: 9163381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-related potentials in auditory backward recognition masking: a new way to study the neurophysiological basis of sensory memory in humans.
    Winkler I; Näätänen R
    Neurosci Lett; 1992 Jun; 140(2):239-42. PubMed ID: 1501786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-related brain potentials reflecting processing of relevant and irrelevant stimuli during selective listening.
    Alho K; Sams M; Paavilainen P; Reinikainen K; Näätänen R
    Psychophysiology; 1989 Sep; 26(5):514-28. PubMed ID: 2616700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-related potentials reveal how non-attended complex sound patterns are represented by the human brain.
    Schröger E; Näätänen R; Paavilainen P
    Neurosci Lett; 1992 Nov; 146(2):183-6. PubMed ID: 1491786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of an objective electrophysiological loudness scaling: a kernel-based novelty detection approach.
    Mariam M; Delb W; Schick B; Strauss DJ
    Artif Intell Med; 2012 Jul; 55(3):185-95. PubMed ID: 22592125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory sensory memory and the aging brain: A mismatch negativity study.
    Cooper RJ; Todd J; McGill K; Michie PT
    Neurobiol Aging; 2006 May; 27(5):752-62. PubMed ID: 15908049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain?
    Näätänen R; Paavilainen P; Alho K; Reinikainen K; Sams M
    Neurosci Lett; 1989 Mar; 98(2):217-21. PubMed ID: 2710416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously active pre-attentive representations of local and global rules for sound sequences in the human brain.
    Horváth J; Czigler I; Sussman E; Winkler I
    Brain Res Cogn Brain Res; 2001 Aug; 12(1):131-44. PubMed ID: 11489616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate neural processing of timbre dimensions in auditory sensory memory.
    Caclin A; Brattico E; Tervaniemi M; Näätänen R; Morlet D; Giard MH; McAdams S
    J Cogn Neurosci; 2006 Dec; 18(12):1959-72. PubMed ID: 17129184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.