These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8787848)

  • 1. Electrosensory optimization to conspecific phasic signals for mating.
    Tricas TC; Michael SW; Sisneros JA
    Neurosci Lett; 1995 Dec; 202(1-2):129-32. PubMed ID: 8787848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields.
    Tricas TC; New JG
    J Comp Physiol A; 1998 Jan; 182(1):89-101. PubMed ID: 9447716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric organ discharge and electrosensory reafference in skates.
    New JG
    Biol Bull; 1994 Aug; 187(1):64-75. PubMed ID: 7918797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response properties and biological function of the skate electrosensory system during ontogeny.
    Sisneros JA; Tricas TC; Luer CA
    J Comp Physiol A; 1998 Jul; 183(1):87-99. PubMed ID: 9691481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgen-induced changes in the response dynamics of ampullary electrosensory primary afferent neurons.
    Sisneros JA; Tricas TC
    J Neurosci; 2000 Nov; 20(22):8586-95. PubMed ID: 11069967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3044-50. PubMed ID: 19749096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroethology and life history adaptations of the elasmobranch electric sense.
    Sisneros JA; Tricas TC
    J Physiol Paris; 2002; 96(5-6):379-89. PubMed ID: 14692486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From morphology to neural information: the electric sense of the skate.
    Camperi M; Tricas TC; Brown BR
    PLoS Comput Biol; 2007 Jun; 3(6):e113. PubMed ID: 17571918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible involvement of the ampullary electroreceptor system in detection of frequency-modulated electrocommunication signals in Eigenmannia.
    Naruse M; Kawasaki M
    J Comp Physiol A; 1998 Nov; 183(5):543-52. PubMed ID: 9839452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular tuning of electroreception in sharks and skates.
    Bellono NW; Leitch DB; Julius D
    Nature; 2018 Jun; 558(7708):122-126. PubMed ID: 29849147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3037-43. PubMed ID: 19749095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medullary electrosensory processing in the little skate. II. Suppression of self-generated electrosensory interference during respiration.
    New JG; Bodznick D
    J Comp Physiol A; 1990 Jul; 167(2):295-307. PubMed ID: 2213659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-latency interneurons in the dorsal nucleus of the little skate, Raja erinacea.
    Duman CH
    Brain Res; 1997 Oct; 771(1):80-8. PubMed ID: 9383011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the electrosensory morphology of a euryhaline and a marine stingray.
    Camilieri-Asch V; Kempster RM; Collin SP; Johnstone RW; Theiss SM
    Zoology (Jena); 2013 Oct; 116(5):270-6. PubMed ID: 23988133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina).
    Sisneros JA; Tricas TC
    Brain Behav Evol; 2002; 59(3):130-40. PubMed ID: 12119532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish.
    Montgomery JC; Bodznick D
    Neurosci Lett; 1994 Jun; 174(2):145-8. PubMed ID: 7970170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding of social signals in all three electrosensory pathways of Eigenmannia virescens.
    Stöckl A; Sinz F; Benda J; Grewe J
    J Neurophysiol; 2014 Nov; 112(9):2076-91. PubMed ID: 25098964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses.
    von der Emde G; Bell CC
    J Neurophysiol; 1996 Sep; 76(3):1581-96. PubMed ID: 8890278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.