These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8788060)

  • 1. Automatic analysis of cortical signals recorded with voltage-sensitive dyes using a forward-backward non-linear filtering technique and deconvolution.
    Litaudon P; Girardeau-Montaut C; Girardeau-Montaut JP; Cattarelli M
    J Neurosci Methods; 1995 Dec; 63(1-2):153-7. PubMed ID: 8788060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed optical imaging of afferent flow through rat olfactory bulb slices: voltage-sensitive dye signals reveal periglomerular cell activity.
    Senseman DM
    J Neurosci; 1996 Jan; 16(1):313-24. PubMed ID: 8613798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the in vivo rat piriform cortex activity recorded with voltage-sensitive dyes: comparison of the optical signals and the field potentials.
    Litaudon P; Cattarelli M
    Brain Res; 1992 Oct; 594(1):171-5. PubMed ID: 1467937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electric stimulation.
    Cinelli AR; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2033-52. PubMed ID: 7623098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. I. Characterization of the recording system.
    Cinelli AR; Neff SR; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2017-32. PubMed ID: 7542698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recording of cortical activity after in vitro perfusion of cerebral arteries with a voltage-sensitive dye.
    de Curtis M; Takashima I; Iijima T
    Brain Res; 1999 Aug; 837(1-2):314-9. PubMed ID: 10434019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea).
    Cinelli AR; Salzberg BM
    J Neurophysiol; 1990 Dec; 64(6):1767-90. PubMed ID: 1981575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrotonic interaction of secondary neurons of the carp olfactory bulb].
    Potapov AA; Gusel'nikova AA
    Neirofiziologiia; 1976; 8(5):490-6. PubMed ID: 980170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal distribution of a late synchronized activity in olfactory pathways following stimulation of the olfactory bulb in rats.
    Mouly AM; Litaudon P; Chabaud P; Ravel N; Gervais R
    Eur J Neurosci; 1998 Mar; 10(3):1128-35. PubMed ID: 9753181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olfactory bulb repetitive stimulations reveal non-homogeneous distribution of the inhibitory processes in the rat piriform cortex.
    Litaudon P; Cattarelli M
    Eur J Neurosci; 1996 Jan; 8(1):21-9. PubMed ID: 8713447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-sensitive dyes and functional activity in the olfactory pathway.
    Cinelli AR; Kauer JS
    Annu Rev Neurosci; 1992; 15():321-51. PubMed ID: 1575446
    [No Abstract]   [Full Text] [Related]  

  • 12. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evoked changes of membrane potential in guinea pig sensory neocortical slices: an analysis with voltage-sensitive dyes and a fast optical recording method.
    Albowitz B; Kuhnt U
    Exp Brain Res; 1993; 93(2):213-25. PubMed ID: 8491262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping membrane potential transients in crayfish (Procambarus clarkii) optic lobe neuropils with voltage-sensitive dyes.
    Yagodin S; Collin C; Alkon DL; Sheppard NF; Sattelle DB
    J Neurophysiol; 1999 Jan; 81(1):334-44. PubMed ID: 9914293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.
    Bikson M; Inoue M; Akiyama H; Deans JK; Fox JE; Miyakawa H; Jefferys JG
    J Physiol; 2004 May; 557(Pt 1):175-90. PubMed ID: 14978199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electrical characteristics of the granular neurons of the carp olfactory bulb].
    Potapov AA; Gusel'nikova KG
    Neirofiziologiia; 1975; 7(6):597-602. PubMed ID: 1207841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of inhibition in the rat olfactory bulb external plexiform layer.
    Ezeh PI; Wellis DP; Scott JW
    J Neurophysiol; 1993 Jul; 70(1):263-74. PubMed ID: 8395579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory pathway evoked potentials in response to hypothalamic stimulation.
    Guevara-Aguilar R; Aguilar-Baturoni HU
    Brain Res Bull; 1978; 3(5):467-74. PubMed ID: 122712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Generation of impulse activity by the dendrites of secondary neurons in the rat olfactory bulb].
    Voronkov GS; Gusel'nikova KG; Torgovanova GV
    Neirofiziologiia; 1976; 8(3):283-90. PubMed ID: 181691
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.