These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8788062)

  • 21. A comparative study on fabrication techniques for on-chip microelectrodes.
    Temiz Y; Ferretti A; Leblebici Y; Guiducci C
    Lab Chip; 2012 Nov; 12(22):4920-8. PubMed ID: 23042440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording.
    Pan AI; Lin MH; Chung HW; Chen H; Yeh SR; Chuang YJ; Chang YC; Yew TR
    Analyst; 2016 Jan; 141(1):279-84. PubMed ID: 26588673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells.
    Ghane-Motlagh B; Javanbakht T; Shoghi F; Wilkinson KJ; Martel R; Sawan M
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():642-650. PubMed ID: 27524064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements.
    Suzuki K; Rohlicek V; Frömter E
    Pflugers Arch; 1978 Dec; 378(2):141-8. PubMed ID: 569835
    [No Abstract]   [Full Text] [Related]  

  • 25. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
    Weiland JD; Anderson DJ; Humayun MS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation.
    Heim M; Yvert B; Kuhn A
    J Physiol Paris; 2012; 106(3-4):137-45. PubMed ID: 22027264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate.
    Yi W; Chen C; Feng Z; Xu Y; Zhou C; Masurkar N; Cavanaugh J; Cheng MM
    Nanotechnology; 2015 Mar; 26(12):125301. PubMed ID: 25742874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insulation of thin-film parylene-C/platinum probes in saline solution through encapsulation in multilayer ALD ceramic films.
    Forssell M; Ong XC; Khilwani R; Burak Ozdoganlar O; Fedder GK
    Biomed Microdevices; 2018 Jul; 20(3):61. PubMed ID: 30051149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simplified method for manufacturing glass-insulated metal microelectrodes.
    Sugiyama K; Dong WK; Chudler EH
    J Neurosci Methods; 1994 Jul; 53(1):73-80. PubMed ID: 7990516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Band-type microelectrodes for amperometric immunoassays.
    Lee GY; Chang YW; Ko H; Kang MJ; Pyun JC
    Anal Chim Acta; 2016 Jul; 928():39-48. PubMed ID: 27251855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parylene insulated probes for scanning electrochemical-atomic force microscopy.
    Derylo MA; Morton KC; Baker LA
    Langmuir; 2011 Nov; 27(22):13925-30. PubMed ID: 21961960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of impedance at the microelectrode-saline and microelectrode-culture medium interface.
    Carter SJ; Linker CJ; Turkle-Huslig T; Howard LL
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1123-9. PubMed ID: 1487275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parylene-coated ionic liquid-carbon nanotube actuators for user-safe haptic devices.
    Bubak G; Gendron D; Ceseracciu L; Ansaldo A; Ricci D
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15542-50. PubMed ID: 26132784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrodeposited iridium oxide for neural stimulation and recording electrodes.
    Meyer RD; Cogan SF; Nguyen TH; Rauh RD
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):2-11. PubMed ID: 11482359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elastomeric and soft conducting microwires for implantable neural interfaces.
    Kolarcik CL; Luebben SD; Sapp SA; Hanner J; Snyder N; Kozai TD; Chang E; Nabity JA; Nabity ST; Lagenaur CF; Cui XT
    Soft Matter; 2015 Jun; 11(24):4847-61. PubMed ID: 25993261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of carbon-fibre microelectrode for extracellular recording of synaptic potentials.
    Kuras A; Gutmaniene N
    J Neurosci Methods; 1995 Nov; 62(1-2):207-12. PubMed ID: 8750105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR; Tresco PA
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization.
    Minnikanti S; Diao G; Pancrazio JJ; Xie X; Rieth L; Solzbacher F; Peixoto N
    Acta Biomater; 2014 Feb; 10(2):960-7. PubMed ID: 24185000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible parylene-based microelectrode arrays for high resolution EMG recordings in freely moving small animals.
    Metallo C; White RD; Trimmer BA
    J Neurosci Methods; 2011 Feb; 195(2):176-84. PubMed ID: 21167202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.