These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8788091)

  • 1. The mechanical properties of fin whale arteries are explained by novel connective tissue designs.
    Gosline JM; Shadwick RE
    J Exp Biol; 1996 Apr; 199(Pt 4):985-97. PubMed ID: 8788091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arterial Windkessels in marine mammals.
    Shadwick RE; Gosline JM
    Symp Soc Exp Biol; 1995; 49():243-52. PubMed ID: 8571227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arterial mechanics in the fin whale suggest a unique hemodynamic design.
    Shadwick RE; Gosline JM
    Am J Physiol; 1994 Sep; 267(3 Pt 2):R805-18. PubMed ID: 8092327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of elastin along the thoracic aorta in the pig.
    Lillie MA; Gosline JM
    J Biomech; 2007; 40(10):2214-21. PubMed ID: 17174959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical design in arteries.
    Shadwick RE
    J Exp Biol; 1999 Dec; 202(Pt 23):3305-13. PubMed ID: 10562513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The composition and biomechanical properties of human cryopreserved aortas, pulmonary trunks, and aortic and pulmonary cusps.
    Kubíková T; Kochová P; Brázdil J; Špatenka J; Burkert J; Králíčková M; Tonar Z
    Ann Anat; 2017 Jul; 212():17-26. PubMed ID: 28434910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-course of the human thoracic aorta ageing process assessed using uniaxial mechanical testing and constitutive modelling.
    Giudici A; Li Y; Yasmin ; Cleary S; Connolly K; McEniery C; Wilkinson IB; Khir AW
    J Mech Behav Biomed Mater; 2022 Oct; 134():105339. PubMed ID: 35868063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmental differences of aortic function and composition: clinical implications.
    Sokolis DP; Boudoulas H; Karayannacos PE
    Hellenic J Cardiol; 2008; 49(3):145-54. PubMed ID: 18543643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.
    Taghizadeh H; Tafazzoli-Shadpour M
    J Mech Behav Biomed Mater; 2017 Jan; 65():20-28. PubMed ID: 27544616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A custom image-based analysis tool for quantifying elastin and collagen micro-architecture in the wall of the human aorta from multi-photon microscopy.
    Koch RG; Tsamis A; D'Amore A; Wagner WR; Watkins SC; Gleason TG; Vorp DA
    J Biomech; 2014 Mar; 47(5):935-943. PubMed ID: 24524988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material and structural properties of fin whale (Balaenoptera physalus) Zwischensubstanz.
    Pinto SJ; Shadwick RE
    J Morphol; 2013 Aug; 274(8):947-55. PubMed ID: 23640788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and structural changes in human thoracic aortas with age.
    Jadidi M; Habibnezhad M; Anttila E; Maleckis K; Desyatova A; MacTaggart J; Kamenskiy A
    Acta Biomater; 2020 Feb; 103():172-188. PubMed ID: 31877371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior.
    Armentano RL; Barra JG; Levenson J; Simon A; Pichel RH
    Circ Res; 1995 Mar; 76(3):468-78. PubMed ID: 7859392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile residual strains on the elastic lamellae along the porcine thoracic aorta.
    Lillie MA; Gosline JM
    J Vasc Res; 2006; 43(6):587-601. PubMed ID: 17033196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical contribution of lamellar and interlamellar elastin along the mouse aorta.
    Clark TE; Lillie MA; Vogl AW; Gosline JM; Shadwick RE
    J Biomech; 2015 Oct; 48(13):3599-605. PubMed ID: 26321365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of selective digestion of elastin and collagen on mechanical properties of human aortas.
    Kobielarz M; Chwiłkowska A; Turek A; Maksymowicz K; Marciniak M
    Acta Bioeng Biomech; 2015; 17(2):55-62. PubMed ID: 26415712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age.
    Brüel A; Oxlund H
    Atherosclerosis; 1996 Dec; 127(2):155-65. PubMed ID: 9125305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model.
    Wuyts FL; Vanhuyse VJ; Langewouters GJ; Decraemer WF; Raman ER; Buyle S
    Phys Med Biol; 1995 Oct; 40(10):1577-97. PubMed ID: 8532741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection.
    Angouras D; Sokolis DP; Dosios T; Kostomitsopoulos N; Boudoulas H; Skalkeas G; Karayannacos PE
    Eur J Cardiothorac Surg; 2000 Apr; 17(4):468-73. PubMed ID: 10773572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.