These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 8788492)
41. [Melatonin and biological rhythms]. Pevet P Therapie; 1998; 53(5):411-20. PubMed ID: 9921032 [TBL] [Abstract][Full Text] [Related]
42. Interactions between light and melatonin on the circadian clock of mice. Benloucif S; Masana MI; Yun K; Dubocovich ML J Biol Rhythms; 1999 Aug; 14(4):281-9. PubMed ID: 10447308 [TBL] [Abstract][Full Text] [Related]
43. Photoperiod-melatonin relay in deer. Lincoln GA Acta Vet Hung; 1998; 46(3):341-56. PubMed ID: 9704533 [TBL] [Abstract][Full Text] [Related]
44. The pineal gland: photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs. Warren WS; Cassone VM J Biol Rhythms; 1995 Mar; 10(1):64-79. PubMed ID: 7632982 [TBL] [Abstract][Full Text] [Related]
45. MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Poirel VJ; Masson-Pévet M; Pevét P; Gauer F Brain Res; 2002 Aug; 946(1):64-71. PubMed ID: 12133595 [TBL] [Abstract][Full Text] [Related]
46. A marked diurnal rhythm of melatonin ML1A receptor mRNA expression in the suprachiasmatic nucleus. Neu JM; Niles LP Brain Res Mol Brain Res; 1997 Oct; 49(1-2):303-6. PubMed ID: 9387893 [TBL] [Abstract][Full Text] [Related]
47. Melatonin and circadian control in mammals. Armstrong SM Experientia; 1989 Oct; 45(10):932-8. PubMed ID: 2680573 [TBL] [Abstract][Full Text] [Related]
48. Melatonin instantaneously resets intrinsic circadian rhythmicity in the rat suprachiasmatic nucleus. Sumová A; Illnerová H Neurosci Lett; 1996 Nov; 218(3):181-4. PubMed ID: 8945758 [TBL] [Abstract][Full Text] [Related]
49. Synchronizing effects of melatonin on diurnal and circadian rhythms. Pfeffer M; Korf HW; Wicht H Gen Comp Endocrinol; 2018 Mar; 258():215-221. PubMed ID: 28533170 [TBL] [Abstract][Full Text] [Related]
50. Alteration by maternal pinealectomy of fetal and neonatal melatonin and dopamine D1 receptor binding in the suprachiasmatic nuclei. Naitoh N; Watanabe Y; Matsumura K; Murai I; Kobayashi K; Imai-Matsumura K; Ohtuka H; Takagi K; Miyake Y; Satoh K; Watanabe Y Biochem Biophys Res Commun; 1998 Dec; 253(3):850-4. PubMed ID: 9918818 [TBL] [Abstract][Full Text] [Related]
51. The photoperiod, circadian regulation and chronodisruption: the requisite interplay between the suprachiasmatic nuclei and the pineal and gut melatonin. Reiter RJ; Rosales-Corral S; Coto-Montes A; Boga JA; Tan DX; Davis JM; Konturek PC; Konturek SJ; Brzozowski T J Physiol Pharmacol; 2011 Jun; 62(3):269-74. PubMed ID: 21893686 [TBL] [Abstract][Full Text] [Related]
52. Perinatal neuroendocrine regulation. Development of the circadian time-keeping system. Serón-Ferré M; Torres C; Parraguez VH; Vergara M; Valladares L; Forcelledo ML; Constandil L; Valenzuela GJ Mol Cell Endocrinol; 2002 Jan; 186(2):169-73. PubMed ID: 11900892 [TBL] [Abstract][Full Text] [Related]
53. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus. Sosniyenko S; Hut RA; Daan S; Sumová A Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112 [TBL] [Abstract][Full Text] [Related]
54. Evidence for a biological dawn and dusk in the human circadian timing system. Wehr TA; Aeschbach D; Duncan WC J Physiol; 2001 Sep; 535(Pt 3):937-51. PubMed ID: 11559786 [TBL] [Abstract][Full Text] [Related]
55. Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Lin JT; Kornhauser JM; Singh NP; Mayo KE; Takahashi JS Brain Res Mol Brain Res; 1997 Jun; 46(1-2):303-10. PubMed ID: 9191106 [TBL] [Abstract][Full Text] [Related]
56. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents. Mendoza J; Revel FG; Pévet P; Challet E Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821 [TBL] [Abstract][Full Text] [Related]
57. N-Methyl-D-aspartate microinjected into the suprachiasmatic nucleus mimics the phase-shifting effects of light in the diurnal Nile grass rat (Arvicanthis niloticus). Novak CM; Albers HE Brain Res; 2002 Oct; 951(2):255-63. PubMed ID: 12270504 [TBL] [Abstract][Full Text] [Related]
58. Is a critical interval of the circadian pacemaker at dusk responsive to light and melatonin responsible for the timing of estrus in the Romney Marsh ewe? Matthews CD; Guerin MV; Napier AJ J Biol Rhythms; 1995 Dec; 10(4):308-18. PubMed ID: 8639939 [TBL] [Abstract][Full Text] [Related]
59. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent. Jha PK; Bouâouda H; Gourmelen S; Dumont S; Fuchs F; Goumon Y; Bourgin P; Kalsbeek A; Challet E J Neurosci; 2017 Apr; 37(16):4343-4358. PubMed ID: 28320839 [TBL] [Abstract][Full Text] [Related]
60. A mathematical model of the circadian phase-shifting effects of exogenous melatonin. Breslow ER; Phillips AJ; Huang JM; St Hilaire MA; Klerman EB J Biol Rhythms; 2013 Feb; 28(1):79-89. PubMed ID: 23382594 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]