These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 878885)

  • 1. Hydro- and hemodynamic effects of catheterization of vessels. III. Experiments with a rigid-walled model.
    Bjorno L; Pettersson H
    Acta Radiol Diagn (Stockh); 1977 Jan; 18(1):1-16. PubMed ID: 878885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydro- and hemodynamic effects of catheterization of vessels. II. Model experiments comparing circular and annular lumen area reduction.
    Bjorno L; Pettersson H
    Acta Radiol Diagn (Stockh); 1976 Nov; 17(6):749-62. PubMed ID: 1016498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydro-and hemodynamic effects of catheterization of vessels. I. An experimental model.
    Bjøornøo L; Pettersson H
    Acta Radiol Diagn (Stockh); 1976 Jul; 17(4):511-8. PubMed ID: 970211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydro- and hemodynamic effects of catheterization of vessels. V. Experimental and clinical catheterization of stenoses.
    Bjorno L; Pettersson H
    Acta Radiol Diagn (Stockh); 1977 Mar; 18(2):193-209. PubMed ID: 871086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow.
    Grigioni M; Daniele C; Morbiducci U; D'Avenio G; Di Benedetto G; Del Gaudio C; Barbaro V
    J Biomech; 2002 Dec; 35(12):1599-612. PubMed ID: 12445613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental manufacture of a catheter for the measurement of blood flow rate.
    Ota T; Matsuda H; Tsukube T; Okada M
    Angiology; 1993 Mar; 44(3):176-82. PubMed ID: 8442527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydro- and hemodynamic effects of catheterization of vessels. IV. Catheterization in the dog.
    Hellsten S; Pettersson H
    Acta Radiol Diagn (Stockh); 1977 Jan; 18(1):17-24. PubMed ID: 878888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimated mean flow resistance increase during coronary artery catheterization.
    Back LH
    J Biomech; 1994 Feb; 27(2):169-75. PubMed ID: 8132684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A venous pulse Doppler catheter-tip flowmeter for measuring arterial blood velocity, flow, and diameter in deep arteries.
    Nealeigh RC; Miller CW
    ISA Trans; 1976; 15(1):84-7. PubMed ID: 133084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics.
    Hademenos GJ; Massoud TF; Viñuela F
    Neurosurgery; 1996 May; 38(5):1005-14; discussion 1014-5. PubMed ID: 8727827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow in a catheterized curved artery with stenosis.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1999 Jan; 32(1):49-61. PubMed ID: 10050951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Venous ultrasound catheter-tip technique for evaluation of arterial hemodynamics.
    Nealeigh RC; Miller CW; McLeod FD
    J Appl Physiol; 1976 Dec; 41(6):946-52. PubMed ID: 1002651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro hemodynamic model of the arm arteriovenous circulation to study hemodynamics of native arteriovenous fistula and the distal revascularization and interval ligation procedure.
    Varble N; Day S; Phillips D; Mix D; Schwarz K; Illig KA; Chandra A
    J Vasc Surg; 2014 May; 59(5):1410-7. PubMed ID: 23845661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and hemodynamics of microvascular networks: heterogeneity and correlations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1713-22. PubMed ID: 7503269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of pulsatile flow in a uniform deformable vessel.
    Johnson GA; Borovetz HS; Anderson JL
    J Biomech; 1992 Jan; 25(1):91-100. PubMed ID: 1733987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological flow waveform in a rigid elliptical vessel.
    Robertson MB; Köhler U
    IMA J Math Appl Med Biol; 2001 Mar; 18(1):77-98. PubMed ID: 11339339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the hemodynamics of A1 dysplasia or hypoplasia to anterior communicating artery aneurysms: a 3-dimensional numerical simulation study.
    Xu L; Zhang F; Wang H; Yu Y
    J Comput Assist Tomogr; 2012; 36(4):421-6. PubMed ID: 22805671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of increased flow resistance in a narrow catheterized artery--a theoretical model.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1996 Jul; 29(7):917-30. PubMed ID: 8809622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.