BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 8789141)

  • 1. Prediction of human immunodeficiency virus protease cleavage sites in proteins.
    Chou KC
    Anal Biochem; 1996 Jan; 233(1):1-14. PubMed ID: 8789141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIV-1 protease cleavage site prediction based on amino acid property.
    Niu B; Lu L; Liu L; Gu TH; Feng KY; Lu WC; Cai YD
    J Comput Chem; 2009 Jan; 30(1):33-9. PubMed ID: 18496789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support Vector Machines for predicting HIV protease cleavage sites in protein.
    Cai YD; Liu XJ; Xu XB; Chou KC
    J Comput Chem; 2002 Jan; 23(2):267-74. PubMed ID: 11924738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A vector projection approach to predicting HIV protease cleavage sites in proteins.
    Chou KC; Zhang CT; Kézdy FJ
    Proteins; 1993 Jun; 16(2):195-204. PubMed ID: 8332607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method.
    Chou KC; Tomasselli AG; Reardon IM; Heinrikson RL
    Proteins; 1996 Jan; 24(1):51-72. PubMed ID: 8628733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable context Markov chains for HIV protease cleavage site prediction.
    Oğul H
    Biosystems; 2009 Jun; 96(3):246-50. PubMed ID: 19758550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A formulation for correlating properties of peptides and its application to predicting human immunodeficiency virus protease-cleavable sites in proteins.
    Chou JJ
    Biopolymers; 1993 Sep; 33(9):1405-14. PubMed ID: 8400033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease?
    Towler EM; Gulnik SV; Bhat TN; Xie D; Gustschina E; Sumpter TR; Robertson N; Jones C; Sauter M; Mueller-Lantzsch N; Debouck C; Erickson JW
    Biochemistry; 1998 Dec; 37(49):17137-44. PubMed ID: 9860826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human immunodeficiency virus protease ligand specificity conferred by residues outside of the active site cavity.
    Hoog SS; Towler EM; Zhao B; Doyle ML; Debouck C; Abdel-Meguid SS
    Biochemistry; 1996 Aug; 35(32):10279-86. PubMed ID: 8756683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potent HIV protease inhibitors containing a novel (hydroxyethyl)amide isostere.
    Beaulieu PL; Wernic D; Abraham A; Anderson PC; Bogri T; Bousquet Y; Croteau G; Guse I; Lamarre D; Liard F; Paris W; Thibeault D; Pav S; Tong L
    J Med Chem; 1997 Jul; 40(14):2164-76. PubMed ID: 9216835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A side chain at position 48 of the human immunodeficiency virus type-1 protease flap provides an additional specificity determinant.
    Moody MD; Pettit SC; Shao W; Everitt L; Loeb DD; Hutchison CA; Swanstrom R
    Virology; 1995 Mar; 207(2):475-85. PubMed ID: 7886951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease.
    Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS
    Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins.
    Shen HB; Chou KC
    Anal Biochem; 2008 Apr; 375(2):388-90. PubMed ID: 18249180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining HIV protease cleavage data using genetic programming with a sum-product function.
    Yang ZR; Dalby AR; Qiu J
    Bioinformatics; 2004 Dec; 20(18):3398-405. PubMed ID: 15256407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
    Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA
    Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of HIV-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization.
    Rabinowitz M; Myers L; Banjevic M; Chan A; Sweetkind-Singer J; Haberer J; McCann K; Wolkowicz R
    Bioinformatics; 2006 Mar; 22(5):541-9. PubMed ID: 16368772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors.
    Savarino A; Cauda R; Cassone A
    J Infect Dis; 2005 Apr; 191(8):1381-2; author reply 1382-3. PubMed ID: 15776390
    [No Abstract]   [Full Text] [Related]  

  • 18. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures.
    Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the specificity of HIV protease: an application of Markov chain theory.
    Chou KC; Zhang CT
    J Protein Chem; 1993 Dec; 12(6):709-24. PubMed ID: 8136021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New database.
    Vondrasek J; Wlodawer A
    Science; 1996 Apr; 272(5260):337-8. PubMed ID: 8602518
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.