These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1135 related articles for article (PubMed ID: 8789199)
1. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate. Sugumaran M Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199 [TBL] [Abstract][Full Text] [Related]
2. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol. Sugumaran M; Bolton J Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501 [TBL] [Abstract][Full Text] [Related]
3. Tyrosinase-catalyzed oxidation of 3,4-dihydroxyphenylglycine. Sugumaran M; Tan S; Sun HL Arch Biochem Biophys; 1996 May; 329(2):175-80. PubMed ID: 8638949 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation. Krol ES; Bolton JL Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692 [TBL] [Abstract][Full Text] [Related]
5. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Sugumaran M; Bolton JL Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954 [TBL] [Abstract][Full Text] [Related]
6. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-DOPA oxidation by mushroom tyrosinase. Schved F; Kahn V Pigment Cell Res; 1992 Feb; 5(1):41-8. PubMed ID: 1631021 [TBL] [Abstract][Full Text] [Related]
7. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine. Sugumaran M; Nelson E Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid. Sugumaran M; Dali H; Semensi V Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884 [TBL] [Abstract][Full Text] [Related]
9. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis. Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of 6-hydroxydopamine catalyzed by tyrosinase. Rodriguez-López JN; Varón R; García-Cánovas F Int J Biochem; 1993 Aug; 25(8):1175-82. PubMed ID: 8405659 [TBL] [Abstract][Full Text] [Related]
11. Trapping of transiently formed quinone methide during enzymatic conversion of N-acetyldopamine to N-acetylnorepinephrine. Sugumaran M; Saul S; Semensi V FEBS Lett; 1989 Jul; 252(1-2):135-8. PubMed ID: 2503395 [TBL] [Abstract][Full Text] [Related]
12. Quinone and quinone methide as transient intermediates involved in the side chain hydroxylation of N-acyldopamine derivatives by soluble enzymes from Manduca sexta cuticle. Saul SJ; Dali H; Sugumaran M Arch Insect Biochem Physiol; 1991; 16(2):123-38. PubMed ID: 1799673 [TBL] [Abstract][Full Text] [Related]
13. The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites. Ito S; Yamanaka Y; Ojika M; Wakamatsu K Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26828480 [TBL] [Abstract][Full Text] [Related]
14. Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate. Sugumaran M Biochemistry; 1986 Aug; 25(16):4489-92. PubMed ID: 3094574 [TBL] [Abstract][Full Text] [Related]
15. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells. Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899 [TBL] [Abstract][Full Text] [Related]
16. Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system. Awad HM; Boersma MG; Boeren S; van der Woude H; van Zanden J; van Bladeren PJ; Vervoort J; Rietjens IM FEBS Lett; 2002 Jun; 520(1-3):30-4. PubMed ID: 12044865 [TBL] [Abstract][Full Text] [Related]
17. Initial mushroom tyrosinase-catalysed oxidation product of 4-hydroxyanisole is 4-methoxy-ortho-benzoquinone. Naish S; Cooksey CJ; Riley PA Pigment Cell Res; 1988; 1(6):379-81. PubMed ID: 3148921 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of 3,4-dihydroxybenzyl alcohol: a sclerotizing precursor for cockroach ootheca. Sugumaran M; Semensi V; Dali H; Nellaiappan K Arch Insect Biochem Physiol; 1991; 16(1):31-44. PubMed ID: 1799672 [TBL] [Abstract][Full Text] [Related]
19. Effect of maltol on the oxidation of DL-DOPA, dopamine, N-acetyldopamine (NADA), and norepinephrine by mushroom tyrosinase. Kahn V; Ben-Shalom N Pigment Cell Res; 1997 Jun; 10(3):139-49. PubMed ID: 9266600 [TBL] [Abstract][Full Text] [Related]
20. On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata. Sugumaran M; Saul SJ; Dali H Arch Insect Biochem Physiol; 1990; 15(4):255-69. PubMed ID: 2134026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]