These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8789392)

  • 1. Mechanism of butyrate-induced vasorelaxation of rat mesenteric resistance artery.
    Aaronson PI; McKinnon W; Poston L
    Br J Pharmacol; 1996 Jan; 117(2):365-71. PubMed ID: 8789392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of lactate-induced relaxation of isolated rat mesenteric resistance arteries.
    McKinnon W; Aaronson PI; Knock G; Graves J; Poston L
    J Physiol; 1996 Feb; 490 ( Pt 3)(Pt 3):783-92. PubMed ID: 8683476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Curcumin-Induced Vasorelaxation in Rat Superior Mesenteric Arteries.
    Zhang H; Liu H; Chen Y; Zhang Y
    Ann Vasc Surg; 2018 Apr; 48():233-240. PubMed ID: 28943490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide.
    Graves J; Poston L
    Br J Pharmacol; 1993 Mar; 108(3):631-7. PubMed ID: 8096781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-radical scavengers, thiol-containing reagents and endothelium-dependent relaxation in isolated rat and human resistance arteries.
    Sunman W; Hughes AD; Sever PS
    Clin Sci (Lond); 1993 Mar; 84(3):287-95. PubMed ID: 8384951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endothelial nitric oxide in the response to angiotensin II of small mesenteric arteries of the rat.
    Andriantsitohaina R; Okruhlicova L; Côrtes SF; Lagaud GJ; Randriamboavonjy V; Muller B; Stoclet JC
    J Vasc Res; 1996; 33(5):386-94. PubMed ID: 8862144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular pH regulation in resting and contracting segments of rat mesenteric resistance vessels.
    Aalkjaer C; Cragoe EJ
    J Physiol; 1988 Aug; 402():391-410. PubMed ID: 2976824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-salt diet and responses of the pressurized mesenteric artery of the dog to noradrenaline and acetylcholine.
    Sofola O; Knill A; Myers D; Hainsworth R; Drinkhill M
    Clin Exp Pharmacol Physiol; 2004 Oct; 31(10):696-9. PubMed ID: 15554910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention by insulin treatment of endothelial dysfunction but not enhanced noradrenaline-induced contractility in mesenteric resistance arteries from streptozotocin-induced diabetic rats.
    Taylor PD; Oon BB; Thomas CR; Poston L
    Br J Pharmacol; 1994 Jan; 111(1):35-41. PubMed ID: 8012717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous nitric oxide attenuates beta-adrenoceptor-mediated relaxation in rat aorta.
    Kang KB; van der Zypp A; Majewski H
    Clin Exp Pharmacol Physiol; 2007; 34(1-2):95-101. PubMed ID: 17201742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery.
    Kilpatrick EV; Cocks TM
    Br J Pharmacol; 1994 Jun; 112(2):557-65. PubMed ID: 7521260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries.
    Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S
    Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries.
    Chaytor AT; Evans WH; Griffith TM
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):561-73. PubMed ID: 9508817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-dependent and -independent mechanisms of vasorelaxation by corticotropin-releasing factor in pregnant rat uterine artery.
    Jain V; Vedernikov YP; Saade GR; Chwalisz K; Garfield RE
    J Pharmacol Exp Ther; 1999 Feb; 288(2):407-13. PubMed ID: 9918539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of both nitric oxide and a change in membrane potential to acetylcholine-induced relaxation in the rat small mesenteric artery.
    Waldron GJ; Garland CJ
    Br J Pharmacol; 1994 Jul; 112(3):831-6. PubMed ID: 7921609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple actions of halothane on contractile response to noradrenaline in isolated mesenteric resistance arteries.
    Yoshino J; Akata T; Izumi K; Takahashi S
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Jun; 371(6):500-15. PubMed ID: 16012873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.