BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 8789562)

  • 1. Movement-related cortical potentials during handgrip contractions with special reference to force and electromyogram bilateral deficit.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1995; 72(1-2):1-5. PubMed ID: 8789562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-correlation studies of movement-related cortical potentials during unilateral and bilateral muscle contractions in humans.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):29-35. PubMed ID: 8891497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlimb co-ordination of force and movement-related cortical potentials.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):8-12. PubMed ID: 8891494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation.
    Derosière G; Alexandre F; Bourdillon N; Mandrick K; Ward TE; Perrey S
    Neuroimage; 2014 Jan; 85 Pt 1():471-7. PubMed ID: 23416251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral potentials preceding unilateral and simultaneous bilateral finger movements.
    Kristeva R; Keller E; Deecke L; Kornhuber HH
    Electroencephalogr Clin Neurophysiol; 1979 Aug; 47(2):229-38. PubMed ID: 95715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular drive and force production are not altered during bilateral contractions.
    Jakobi JM; Cafarelli E
    J Appl Physiol (1985); 1998 Jan; 84(1):200-6. PubMed ID: 9451636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks.
    Zheng Y; Gao L; Wang G; Wang Y; Yang Z; Wang X; Li T; Dang C; Zhu R; Wang J
    Neuropsychologia; 2016 May; 85():199-207. PubMed ID: 27018484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral deficit in strength but not rapid force during maximal handgrip contractions.
    Carr JC; Bemben MG; Black CD; Ye X; Defreitas JM
    Eur J Sport Sci; 2021 Jun; 21(6):836-843. PubMed ID: 32706295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement-related cortical potentials associated with progressive muscle fatigue in a grasping task.
    Johnston J; Rearick M; Slobounov S
    Clin Neurophysiol; 2001 Jan; 112(1):68-77. PubMed ID: 11137663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor control for bilateral muscular contractions in humans.
    Oda S
    Jpn J Physiol; 1997 Dec; 47(6):487-98. PubMed ID: 9538273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of maturity and training on bimanual ballistic isometric handgrip.
    Gatev P; Gavrilenko T; Kolev N
    Acta Physiol Pharmacol Bulg; 2001; 26(1-2):97-101. PubMed ID: 11693412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of hand dominance to the bilateral deficit phenomenon.
    Cornwell A; Khodiguian N; Yoo EJ
    Eur J Appl Physiol; 2012 Dec; 112(12):4163-72. PubMed ID: 22532257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles.
    Zijdewind I; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2006 Nov; 175(3):526-35. PubMed ID: 16924489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal isometric force and neural activity during bilateral and unilateral elbow flexion in humans.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1994; 69(3):240-3. PubMed ID: 8001536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-dependent modulations of cortical oscillatory activity in human subjects during a bimanual precision grip task.
    Kilner JM; Salenius S; Baker SN; Jackson A; Hari R; Lemon RN
    Neuroimage; 2003 Jan; 18(1):67-73. PubMed ID: 12507444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary activation of the ipsilateral primary motor cortex during a sustained handgrip task.
    Shibuya K; Kuboyama N; Yamada S
    Eur J Appl Physiol; 2016 Jan; 116(1):171-8. PubMed ID: 26377003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-dependent changes in movement-related cortical potentials.
    Oda S; Shibata M; Moritani T
    J Electromyogr Kinesiol; 1996 Dec; 6(4):247-52. PubMed ID: 20719681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements.
    Ikeda A; Lüders HO; Burgess RC; Shibasaki H
    Brain; 1992 Aug; 115 ( Pt 4)():1017-43. PubMed ID: 1393500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of co-contractions on the cardiovascular response to submaximal static handgrip.
    Kahn JF; Favriou F; Jouanin JC; Grucza R
    Eur J Appl Physiol; 2000 Dec; 83(6):506-11. PubMed ID: 11192057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG discharge patterns during human grip movement are task-dependent and not modulated by muscle contraction modes: a transcranial magnetic stimulation (TMS) study.
    Anson JG; Hasegawa Y; Kasai T; Latash ML; Yahagi S
    Brain Res; 2002 May; 934(2):162-6. PubMed ID: 11955480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.