These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8789570)

  • 1. Oxygen cost of internal work during cycling.
    Francescato MP; Girardis M; di Prampero PE
    Eur J Appl Physiol Occup Physiol; 1995; 72(1-2):51-7. PubMed ID: 8789570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of the change point in oxygen uptake during an incremental exercise test using recursive residuals: relationship to the plasma lactate accumulation and blood acid base balance.
    Zoladz JA; Szkutnik Z; Majerczak J; Duda K
    Eur J Appl Physiol Occup Physiol; 1998 Sep; 78(4):369-77. PubMed ID: 9754978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance.
    Zoladz JA; Duda K; Majerczak J
    Physiol Res; 1998; 47(6):427-38. PubMed ID: 10453750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human critical power-oxygen uptake relationship at different pedalling frequencies.
    Barker T; Poole DC; Noble ML; Barstow TJ
    Exp Physiol; 2006 May; 91(3):621-32. PubMed ID: 16527863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pedalling rate on the energy cost of cycling in humans.
    Belli A; Hintzy F
    Eur J Appl Physiol; 2002 Nov; 88(1-2):158-62. PubMed ID: 12436285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen uptake during submaximal incremental and constant work load exercises in hypoxia.
    Benoit H; Busso T; Prieur F; Castells J; Freyssenet D; Lacour JR; Denis C; Geyssant A
    Int J Sports Med; 1997 Feb; 18(2):101-5. PubMed ID: 9081265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of different cycling frequencies during incremental exercise on the venous plasma potassium concentration in humans.
    Zoladz JA; Duda K; Majerczak J; Thor P
    Physiol Res; 2002; 51(6):581-6. PubMed ID: 12511181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of oxygen consumption during exercise on cycle ergometer: the effects of gravity acceleration.
    Bonjour J; Capelli C; Antonutto G; Calza S; Tam E; Linnarsson D; Ferretti G
    Respir Physiol Neurobiol; 2010 Apr; 171(2):128-34. PubMed ID: 20206305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of age and pedalling rate on cycling efficiency and internal power in humans.
    Martin R; Hautier C; Bedu M
    Eur J Appl Physiol; 2002 Jan; 86(3):245-50. PubMed ID: 11990734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen uptake does not increase linearly at high power outputs during incremental exercise test in humans.
    Zoladz JA; Duda K; Majerczak J
    Eur J Appl Physiol Occup Physiol; 1998 Apr; 77(5):445-51. PubMed ID: 9562296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of body mass on exercise efficiency and VO2 during steady-state cycling.
    Berry MJ; Storsteen JA; Woodard CM
    Med Sci Sports Exerc; 1993 Sep; 25(9):1031-7. PubMed ID: 8231771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of oxygen cost of internal power during cycling exercise with changing pedal rate.
    Tokui M; Hirakoba K
    J Physiol Anthropol; 2008 May; 27(3):133-8. PubMed ID: 18536513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cycling efficiency and pedalling frequency in road cyclists.
    Chavarren J; Calbet JA
    Eur J Appl Physiol Occup Physiol; 1999; 80(6):555-63. PubMed ID: 10541922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of endurance training on the ventilatory response to exercise in elite cyclists.
    Hoogeveen AR
    Eur J Appl Physiol; 2000 May; 82(1-2):45-51. PubMed ID: 10879442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow upward drift of VO2 during constant-load cycling in untrained subjects.
    Camus G; Atchou G; Bruckner JC; Giezendanner D; di Prampero PE
    Eur J Appl Physiol Occup Physiol; 1988; 58(1-2):197-202. PubMed ID: 3203667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodological effects on the VO2-power regression and the accumulated O2 deficit.
    Green S; Dawson BT
    Med Sci Sports Exerc; 1996 Mar; 28(3):392-7. PubMed ID: 8776229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the base-line determination on work efficiency during submaximal cycling.
    Hintzy-Cloutier F; Zameziati K; Belli A
    J Sports Med Phys Fitness; 2003 Mar; 43(1):51-6. PubMed ID: 12629462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.