BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8789722)

  • 1. A fluorescence assay for assessing chelation of intracellular iron in a membrane model system and in mammalian cells.
    Cabantchik ZI; Glickstein H; Milgram P; Breuer W
    Anal Biochem; 1996 Jan; 233(2):221-7. PubMed ID: 8789722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK.
    Petrat F; Rauen U; de Groot H
    Hepatology; 1999 Apr; 29(4):1171-9. PubMed ID: 10094962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chelation and mobilization of cellular iron by different classes of chelators.
    Zanninelli G; Glickstein H; Breuer W; Milgram P; Brissot P; Hider RC; Konijn AM; Libman J; Shanzer A; Cabantchik ZI
    Mol Pharmacol; 1997 May; 51(5):842-52. PubMed ID: 9145923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the chelatable iron pool of single intact cells by laser scanning microscopy.
    Petrat F; de Groot H; Rauen U
    Arch Biochem Biophys; 2000 Apr; 376(1):74-81. PubMed ID: 10729192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of fluorescence methods for assessing labile iron in cells and biological fluids.
    EspĆ³sito BP; Epsztejn S; Breuer W; Cabantchik ZI
    Anal Biochem; 2002 May; 304(1):1-18. PubMed ID: 11969183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II).
    Breuer W; Epsztejn S; Cabantchik ZI
    J Biol Chem; 1995 Oct; 270(41):24209-15. PubMed ID: 7592626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelation and determination of labile iron in primary hepatocytes by pyridinone fluorescent probes.
    Ma Y; de Groot H; Liu Z; Hider RC; Petrat F
    Biochem J; 2006 Apr; 395(1):49-55. PubMed ID: 16336208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chelatable iron pool in living cells: a methodically defined quantity.
    Petrat F; de Groot H; Sustmann R; Rauen U
    Biol Chem; 2002; 383(3-4):489-502. PubMed ID: 12033438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and properties of novel iron(III)-specific fluorescent probes.
    Luo W; Ma YM; Quinn PJ; Hider RC; Liu ZD
    J Pharm Pharmacol; 2004 Apr; 56(4):529-36. PubMed ID: 15099448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of zinc and iron chelation in apoptosis mediated by tachpyridine, an anti-cancer iron chelator.
    Zhao R; Planalp RP; Ma R; Greene BT; Jones BT; Brechbiel MW; Torti FM; Torti SV
    Biochem Pharmacol; 2004 May; 67(9):1677-88. PubMed ID: 15081867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance.
    Liu G; Men P; Harris PL; Rolston RK; Perry G; Smith MA
    Neurosci Lett; 2006 Oct; 406(3):189-93. PubMed ID: 16919875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unprecedented oxidation of a biologically active aroylhydrazone chelator catalysed by iron(III): serendipitous identification of diacylhydrazine ligands with high iron chelation efficacy.
    Bernhardt PV; Chin P; Richardson DR
    J Biol Inorg Chem; 2001 Oct; 6(8):801-9. PubMed ID: 11713687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chelator-facilitated removal of iron from transferrin: relevance to combined chelation therapy.
    Devanur LD; Evans RW; Evans PJ; Hider RC
    Biochem J; 2008 Jan; 409(2):439-47. PubMed ID: 17919118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity.
    Chaston TB; Richardson DR
    Am J Hematol; 2003 Jul; 73(3):200-10. PubMed ID: 12827659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence analysis of the labile iron pool of mammalian cells.
    Epsztejn S; Kakhlon O; Glickstein H; Breuer W; Cabantchik I
    Anal Biochem; 1997 May; 248(1):31-40. PubMed ID: 9177722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the calcein-AM method assay the total cellular 'labile iron pool' or only a fraction of it?
    Tenopoulou M; Kurz T; Doulias PT; Galaris D; Brunk UT
    Biochem J; 2007 Apr; 403(2):261-6. PubMed ID: 17233627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals.
    Dehne N; Lautermann J; Petrat F; Rauen U; de Groot H
    Toxicol Appl Pharmacol; 2001 Jul; 174(1):27-34. PubMed ID: 11437646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class.
    Lim CK; Kalinowski DS; Richardson DR
    Mol Pharmacol; 2008 Jul; 74(1):225-35. PubMed ID: 18424550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.