These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8789959)

  • 41. Voltage-gated K+ channels in rat small cerebral arteries: molecular identity of the functional channels.
    Albarwani S; Nemetz LT; Madden JA; Tobin AA; England SK; Pratt PF; Rusch NJ
    J Physiol; 2003 Sep; 551(Pt 3):751-63. PubMed ID: 12815189
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substitution of a hydrophobic residue alters the conformational stability of Shaker K+ channels during gating and assembly.
    McCormack K; Lin L; Sigworth FJ
    Biophys J; 1993 Oct; 65(4):1740-8. PubMed ID: 8274662
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-type inactivation in the mammalian Shaker K+ channel Kv1.4.
    Lee TE; Philipson LH; Nelson DJ
    J Membr Biol; 1996 Jun; 151(3):225-35. PubMed ID: 8661510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Voltage-gated K+ channel beta subunits: expression and distribution of Kv beta 1 and Kv beta 2 in adult rat brain.
    Rhodes KJ; Monaghan MM; Barrezueta NX; Nawoschik S; Bekele-Arcuri Z; Matos MF; Nakahira K; Schechter LE; Trimmer JS
    J Neurosci; 1996 Aug; 16(16):4846-60. PubMed ID: 8756417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular properties of voltage-gated K+ channels.
    Dolly JO; Parcej DN
    J Bioenerg Biomembr; 1996 Jun; 28(3):231-53. PubMed ID: 8807399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natural substitutions at highly conserved T1-domain residues perturb processing and functional expression of squid Kv1 channels.
    Liu TI; Lebaric ZN; Rosenthal JJ; Gilly WF
    J Neurophysiol; 2001 Jan; 85(1):61-71. PubMed ID: 11152706
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beta subunits promote K+ channel surface expression through effects early in biosynthesis.
    Shi G; Nakahira K; Hammond S; Rhodes KJ; Schechter LE; Trimmer JS
    Neuron; 1996 Apr; 16(4):843-52. PubMed ID: 8608002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular identification of Kvalpha subunits that contribute to the oxygen-sensitive K+ current of chemoreceptor cells of the rabbit carotid body.
    Sanchez D; López-López JR; Pérez-García MT; Sanz-Alfayate G; Obeso A; Ganfornina MD; Gonzalez C
    J Physiol; 2002 Jul; 542(Pt 2):369-82. PubMed ID: 12122138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit.
    Barry DM; Xu H; Schuessler RB; Nerbonne JM
    Circ Res; 1998 Sep; 83(5):560-7. PubMed ID: 9734479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-à-go-go potassium channel.
    Ludwig J; Owen D; Pongs O
    EMBO J; 1997 Nov; 16(21):6337-45. PubMed ID: 9400421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential association of the auxiliary subunit Kvbeta2 with Kv1.4 and Kv4.3 K+ channels.
    Wang L; Takimoto K; Levitan ES
    FEBS Lett; 2003 Jul; 547(1-3):162-4. PubMed ID: 12860406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo functional role of the Drosophila hyperkinetic beta subunit in gating and inactivation of Shaker K+ channels.
    Wang JW; Wu CF
    Biophys J; 1996 Dec; 71(6):3167-76. PubMed ID: 8968587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of outer mouth mutations on hERG channel function: a comparison with similar mutations in the Shaker channel.
    Fan JS; Jiang M; Dun W; McDonald TV; Tseng GN
    Biophys J; 1999 Jun; 76(6):3128-40. PubMed ID: 10354437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression environment determines K+ current properties: Kv1 and Kv4 alpha-subunit-induced K+ currents in mammalian cell lines and cardiac myocytes.
    Petersen KR; Nerbonne JM
    Pflugers Arch; 1999 Feb; 437(3):381-92. PubMed ID: 9914394
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus.
    Chouinard SW; Wilson GF; Schlimgen AK; Ganetzky B
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6763-7. PubMed ID: 7542775
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The brain Kv1.1 potassium channel: in vitro and in vivo studies on subunit assembly and posttranslational processing.
    Deal KK; Lovinger DM; Tamkun MM
    J Neurosci; 1994 Mar; 14(3 Pt 2):1666-76. PubMed ID: 8126562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native delayed rectifier K(+) current in rat mesenteric artery smooth muscle cells.
    Lu Y; Hanna ST; Tang G; Wang R
    Life Sci; 2002 Aug; 71(12):1465-73. PubMed ID: 12127166
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular basis of voltage-dependent potassium currents in porcine granulosa cells.
    Mason DE; Mitchell KE; Li Y; Finley MR; Freeman LC
    Mol Pharmacol; 2002 Jan; 61(1):201-13. PubMed ID: 11752222
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Subunit composition of Kv1 channels in human CNS.
    Coleman SK; Newcombe J; Pryke J; Dolly JO
    J Neurochem; 1999 Aug; 73(2):849-58. PubMed ID: 10428084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.