These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8790328)

  • 21. Expression of spatially regulated genes in the sea urchin embryo.
    Coffman JA; Davidson EH
    Curr Opin Genet Dev; 1992 Apr; 2(2):260-8. PubMed ID: 1638121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements.
    Yuh CH; Li X; Davidson EH; Klein WH
    Dev Biol; 2001 Apr; 232(2):424-38. PubMed ID: 11401403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo.
    Yuh CH; Dorman ER; Davidson EH
    Dev Biol; 2005 May; 281(2):286-98. PubMed ID: 15893979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo.
    Calzone FJ; Thézé N; Thiebaud P; Hill RL; Britten RJ; Davidson EH
    Genes Dev; 1988 Sep; 2(9):1074-88. PubMed ID: 3192074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo competition identifies positive cis-regulatory elements required for lineage-specific gene expression in the sea urchin embryo.
    Franks RR; Britten RJ; Davidson EH
    Ciba Found Symp; 1989; 144():156-66; discussion 166-71, 208-11. PubMed ID: 2673674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative splicing of the Endo16 transcript produces differentially expressed mRNAs during sea urchin gastrulation.
    Godin RE; Urry LA; Ernst SG
    Dev Biol; 1996 Oct; 179(1):148-59. PubMed ID: 8873760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Logic functions of the genomic cis-regulatory code.
    Istrail S; Davidson EH
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):4954-9. PubMed ID: 15788531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competitive titration in living sea urchin embryos of regulatory factors required for expression of the CyIIIa actin gene.
    Franks RR; Anderson R; Moore JG; Hough-Evans BR; Britten RJ; Davidson EH
    Development; 1990 Sep; 110(1):31-40. PubMed ID: 2081468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
    Li X; Bhattacharya C; Dayal S; Maity S; Klein WH
    Differentiation; 2002 May; 70(2-3):109-19. PubMed ID: 12076338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation.
    Nocente-McGrath C; Brenner CA; Ernst SG
    Dev Biol; 1989 Nov; 136(1):264-72. PubMed ID: 2680683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo.
    Hough-Evans BR; Franks RR; Zeller RW; Britten RJ; Davidson EH
    Development; 1990 Sep; 110(1):41-50. PubMed ID: 2081469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Creation of cis-regulatory elements during sea urchin evolution by co-option and optimization of a repetitive sequence adjacent to the spec2a gene.
    Dayal S; Kiyama T; Villinski JT; Zhang N; Liang S; Klein WH
    Dev Biol; 2004 Sep; 273(2):436-53. PubMed ID: 15328024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repeated sequence target sites for maternal DNA-binding proteins in genes activated in early sea urchin development.
    Anderson R; Britten RJ; Davidson EH
    Dev Biol; 1994 May; 163(1):11-8. PubMed ID: 8174766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A view from the genome: spatial control of transcription in sea urchin development.
    Davidson EH
    Curr Opin Genet Dev; 1999 Oct; 9(5):530-41. PubMed ID: 10508696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA-binding protein.
    Calzone FJ; Höög C; Teplow DB; Cutting AE; Zeller RW; Britten RJ; Davidson EH
    Development; 1991 May; 112(1):335-50. PubMed ID: 1769339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rare maternal mRNAs code for regulatory proteins that control lineage-specific gene expression in the sea urchin embryo.
    Cutting AE; Höög C; Calzone FJ; Britten RJ; Davidson EH
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7953-7. PubMed ID: 1700421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes.
    Seid CA; George JM; Sater AK; Kozlowski MT; Lee H; Govindarajan V; Ramachandran RK; Tomlinson CR
    J Mol Biol; 1996 Nov; 264(1):7-19. PubMed ID: 8950263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF; Nguyen A; Davidson EH
    Dev Biol; 2007 Dec; 312(2):584-95. PubMed ID: 17956756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.