BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8790389)

  • 1. Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure.
    Suzuki M; Baskin D; Hood L; Loeb LA
    Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9670-5. PubMed ID: 8790389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermus aquaticus DNA polymerase I mutants with altered fidelity. Interacting mutations in the O-helix.
    Suzuki M; Yoshida S; Adman ET; Blank A; Loeb LA
    J Biol Chem; 2000 Oct; 275(42):32728-35. PubMed ID: 10906120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I.
    Suzuki M; Avicola AK; Hood L; Loeb LA
    J Biol Chem; 1997 Apr; 272(17):11228-35. PubMed ID: 9111024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity.
    Lawyer FC; Stoffel S; Saiki RK; Chang SY; Landre PA; Abramson RD; Gelfand DH
    PCR Methods Appl; 1993 May; 2(4):275-87. PubMed ID: 8324500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
    Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase active site is highly mutable: evolutionary consequences.
    Patel PH; Loeb LA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5095-100. PubMed ID: 10805772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations on the thermostability and function of truncated Thermus aquaticus DNA polymerase fragments.
    Villbrandt B; Sagner G; Schomburg D
    Protein Eng; 1997 Nov; 10(11):1281-8. PubMed ID: 9514116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxypeptidase Taq, a thermostable zinc enzyme, from Thermus aquaticus YT-1: molecular cloning, sequencing, and expression of the encoding gene in Escherichia coli.
    Lee SH; Taguchi H; Yoshimura E; Minagawa E; Kaminogawa S; Ohta T; Matsuzawa H
    Biosci Biotechnol Biochem; 1994 Aug; 58(8):1490-5. PubMed ID: 7765282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus.
    Lawyer FC; Stoffel S; Saiki RK; Myambo K; Drummond R; Gelfand DH
    J Biol Chem; 1989 Apr; 264(11):6427-37. PubMed ID: 2649500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced ribonucleotide incorporation by an O-helix mutant of Thermus aquaticus DNA polymerase I.
    Ogawa M; Tosaka A; Ito Y; Yoshida S; Suzuki M
    Mutat Res; 2001 Apr; 485(3):197-207. PubMed ID: 11267831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site.
    Park Y; Choi H; Lee DS; Kim Y
    Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational dynamics of Thermus aquaticus DNA polymerase I during catalysis.
    Xu C; Maxwell BA; Suo Z
    J Mol Biol; 2014 Aug; 426(16):2901-2917. PubMed ID: 24931550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct function of conserved amino acids in the fingers of Saccharomyces cerevisiae DNA polymerase alpha.
    Ogawa M; Limsirichaikul S; Niimi A; Iwai S; Yoshida S; Suzuki M
    J Biol Chem; 2003 May; 278(21):19071-8. PubMed ID: 12637557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of the 5'-3' exonuclease of Thermus aquaticus DNA polymerase.
    Merkens LS; Bryan SK; Moses RE
    Biochim Biophys Acta; 1995 Nov; 1264(2):243-8. PubMed ID: 7495870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation.
    Li Y; Korolev S; Waksman G
    EMBO J; 1998 Dec; 17(24):7514-25. PubMed ID: 9857206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta.
    Beard WA; Osheroff WP; Prasad R; Sawaya MR; Jaju M; Wood TG; Kraut J; Kunkel TA; Wilson SH
    J Biol Chem; 1996 May; 271(21):12141-4. PubMed ID: 8647805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cloning of the gene for thermostable Thermus aquaticus YT1 DNA polymerase and its expression in Escherichia coli].
    Patrushev LI; Valiaev AG; Golovchenko PA; Vinogradov SV; Chikindas ML; Kiselev VI
    Mol Biol (Mosk); 1993; 27(5):1100-12. PubMed ID: 8246933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.
    Datta K; LiCata VJ
    J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.