These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 8790630)

  • 1. Application of neural networks in the QSAR analysis of percent effect biological data: comparison with adaptive least squares and nonlinear regression analysis.
    Wiese M; Schaper KJ
    SAR QSAR Environ Res; 1993; 1(2-3):137-52. PubMed ID: 8790630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.
    Wang Y; Yang X; Wang J; Cong Y; Mu J; Jin F
    J Hazard Mater; 2016 May; 308():149-56. PubMed ID: 26812082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonicotinoid insecticide design: molecular docking, multiple chemometric approaches, and toxicity relationship with Cowpea aphids.
    Bora A; Suzuki T; Funar-Timofei S
    Environ Sci Pollut Res Int; 2019 May; 26(14):14547-14561. PubMed ID: 30877540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationship (SAR) modelling of mosquito larvicides.
    Devillers J; Doucet-Panaye A; Doucet JP
    SAR QSAR Environ Res; 2015; 26(4):263-78. PubMed ID: 25864415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of random forests method to predict the retention indices of some polycyclic aromatic hydrocarbons.
    Goudarzi N; Shahsavani D; Emadi-Gandaghi F; Chamjangali MA
    J Chromatogr A; 2014 Mar; 1333():25-31. PubMed ID: 24529953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict Kd of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors.
    Maleki A; Daraei H; Alaei L; Faraji A
    Bioorg Khim; 2014; 40(1):70-84. PubMed ID: 25898725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives.
    Mandal AS; Roy K
    Eur J Med Chem; 2009 Apr; 44(4):1509-24. PubMed ID: 18760864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Computer-aided prediction of the mutagenic activity substituted polycyclic compounds].
    Liubimova IK; Abilev SK; Gal'berstam NM; Baskin II; Paliulin VA; Zefirov NS
    Izv Akad Nauk Ser Biol; 2001; (2):180-6. PubMed ID: 11357382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the dermal penetration of polycyclic aromatic hydrocarbons (PAHs): a hierarchical QSAR approach.
    Gute BD; Grunwald GD; Basak SC
    SAR QSAR Environ Res; 1999; 10(1):1-15. PubMed ID: 10408125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti.
    Doucet JP; Papa E; Doucet-Panaye A; Devillers J
    SAR QSAR Environ Res; 2017 Jun; 28(6):451-470. PubMed ID: 28604113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships.
    Hasegawa K; Funatsu K
    SAR QSAR Environ Res; 2000; 11(3-4):189-209. PubMed ID: 10969871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of PC-ANN and PC-LS-SVM in QSAR of CCR1 antagonist compounds: a comparative study.
    Shahlaei M; Fassihi A; Saghaie L
    Eur J Med Chem; 2010 Apr; 45(4):1572-82. PubMed ID: 20170987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-toxicity relationships study of a series of organophosphorus insecticides.
    Zahouily M; Rhihil A; Bazoui H; Sebti S; Zakarya D
    J Mol Model; 2002 May; 8(5):168-72. PubMed ID: 12858851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis.
    Devillers J
    SAR QSAR Environ Res; 2004 Aug; 15(4):237-49. PubMed ID: 15370415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers.
    He L; Jurs PC; Custer LL; Durham SK; Pearl GM
    Chem Res Toxicol; 2003 Dec; 16(12):1567-80. PubMed ID: 14680371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.
    Balabin RM; Lomakina EI
    Analyst; 2011 Apr; 136(8):1703-12. PubMed ID: 21350755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.
    Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ
    Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.