These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8790642)

  • 1. An analysis of the relative occurrence of N-demethylation and N-oxidation in xenobiotic metabolism using structure-reactivity maps.
    Gifford EM; Johnson MA; Kaiser DG; Tsai CC
    SAR QSAR Environ Res; 1994; 2(1-2):105-27. PubMed ID: 8790642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing relative occurrences in metabolic transformations of xenobiotics using structure-activity maps.
    Gifford EM; Johnson MA; Kaiser DG; Tsai CC
    J Chem Inf Comput Sci; 1992; 32(6):591-9. PubMed ID: 1474108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the relative metabolic occurrence of alkyl-nitrogen bond cleavage using structure-reactivity maps.
    Gifford EM; Johnson MA; Kaiser DG; Tsai CC
    Xenobiotica; 1995 Aug; 25(8):825-46. PubMed ID: 8779224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of classic and atypical neuroleptics on caffeine oxidation in rat liver microsomes.
    Daniel WA; Kot M; Wójcikowski J
    Pol J Pharmacol; 2003; 55(6):1055-61. PubMed ID: 14730101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the structural requirements of urokinase-type plasminogen activator inhibitors based on 3D QSAR CoMFA/CoMSIA models.
    Bhongade BA; Gadad AK
    J Med Chem; 2006 Jan; 49(2):475-89. PubMed ID: 16420035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction site mapping of xenobiotic biotransformations.
    Boyer S; Arnby CH; Carlsson L; Smith J; Stein V; Glen RC
    J Chem Inf Model; 2007; 47(2):583-90. PubMed ID: 17302400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the structural requirements of farnesyltransferase inhibitors as potential anti-tumor agents based on 3D-QSAR CoMFA and CoMSIA models.
    Puntambekar DS; Giridhar R; Yadav MR
    Eur J Med Chem; 2008 Jan; 43(1):142-54. PubMed ID: 17448576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR models for predicting the acute toxicity of selected organic chemicals with diverse structures to aquatic non-vertebrates and humans.
    Calleja MC; Geladi P; Persoone G
    SAR QSAR Environ Res; 1994; 2(3):193-234. PubMed ID: 8790646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic oxidation and toxification of N-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1.
    Hyland R; Gescher A; Thummel K; Schiller C; Jheeta P; Mynett K; Smith AW; Mráz J
    Mol Pharmacol; 1992 Feb; 41(2):259-66. PubMed ID: 1538706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity and toxicity.
    Mekenyan OG; Veith GD
    SAR QSAR Environ Res; 1994; 2(1-2):129-43. PubMed ID: 8790643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant monooxygenases: participation in xenobiotic oxidation.
    Khatisashvili G; Gordeziani M; Kvesitadze G; Korte F
    Ecotoxicol Environ Saf; 1997 Mar; 36(2):118-22. PubMed ID: 9126428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation.
    Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D
    Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.
    Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A
    J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Demethylation of nocathiacin I via photo-oxidation.
    Li W; Huang S; Liu X; Leet JE; Cantone JL; Lam KS
    Bioorg Med Chem Lett; 2008 Jul; 18(14):4051-3. PubMed ID: 18556203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorpromazine N-demethylation by hydroperoxidase activity of covalent immobilized lipoxygenase.
    Pinto MC; Santano E; Macias P
    Biotechnol Prog; 2004; 20(5):1583-7. PubMed ID: 15458348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenobiotic oxidation catalyzed by aldehyde dehydrogenases.
    Sladek NE; Manthey CL; Maki PA; Zhang Z; Landkamer GJ
    Drug Metab Rev; 1989; 20(2-4):697-720. PubMed ID: 2680404
    [No Abstract]   [Full Text] [Related]  

  • 18. Synthesis, biochemical evaluation, and classical and three-dimensional quantitative structure-activity relationship studies of 7-substituted-1,2,3,4-tetrahydroisoquinolines and their relative affinities toward phenylethanolamine N-methyltransferase and the alpha2-adrenoceptor.
    Grunewald GL; Dahanukar VH; Jalluri RK; Criscione KR
    J Med Chem; 1999 Jan; 42(1):118-34. PubMed ID: 9888838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of antiparkinson agent dopazinol by rat liver microsomes.
    Vyas KP; Kari PH; Ramjit HG; Pitzenberger SM; Hichens M
    Drug Metab Dispos; 1990; 18(6):1025-30. PubMed ID: 1981508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based interpretation of biotransformation pathways of amide-containing compounds in sludge-seeded bioreactors.
    Helbling DE; Hollender J; Kohler HP; Fenner K
    Environ Sci Technol; 2010 Sep; 44(17):6628-35. PubMed ID: 20690778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.