These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 8790644)
1. Multivariate QSAR analysis of a skin sensitization database. Cronin MT; Basketter DA SAR QSAR Environ Res; 1994; 2(3):159-79. PubMed ID: 8790644 [TBL] [Abstract][Full Text] [Related]
2. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
3. QSAR models for predicting the acute toxicity of selected organic chemicals with diverse structures to aquatic non-vertebrates and humans. Calleja MC; Geladi P; Persoone G SAR QSAR Environ Res; 1994; 2(3):193-234. PubMed ID: 8790646 [TBL] [Abstract][Full Text] [Related]
4. A quantitative structure-toxicity relationships model for the dermal sensitization guinea pig maximization assay. Enslein K; Gombar VK; Blake BW; Maibach HI; Hostynek JJ; Sigman CC; Bagheri D Food Chem Toxicol; 1997; 35(10-11):1091-8. PubMed ID: 9463544 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic applicability domains for non-animal based prediction of toxicological endpoints. QSAR analysis of the schiff base applicability domain for skin sensitization. Roberts DW; Aptula AO; Patlewicz G Chem Res Toxicol; 2006 Sep; 19(9):1228-33. PubMed ID: 16978028 [TBL] [Abstract][Full Text] [Related]
7. A comparison of reactivity schemes for the prediction skin sensitization potential. Patlewicz G; Roberts DW; Uriarte E Chem Res Toxicol; 2008 Feb; 21(2):521-41. PubMed ID: 18189364 [TBL] [Abstract][Full Text] [Related]
8. Ranking of hair dye substances according to predicted sensitization potency: quantitative structure-activity relationships. Søsted H; Basketter DA; Estrada E; Johansen JD; Patlewicz GY Contact Dermatitis; 2004; 51(5-6):241-54. PubMed ID: 15606648 [TBL] [Abstract][Full Text] [Related]
9. Hazard identification of strong dermal sensitizers. Gould JC; Taylor S Toxicol Mech Methods; 2011 Feb; 21(2):86-92. PubMed ID: 20500014 [TBL] [Abstract][Full Text] [Related]
10. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Alves VM; Muratov E; Fourches D; Strickland J; Kleinstreuer N; Andrade CH; Tropsha A Toxicol Appl Pharmacol; 2015 Apr; 284(2):262-72. PubMed ID: 25560674 [TBL] [Abstract][Full Text] [Related]
12. Categorical QSAR Models for skin sensitization based upon local lymph node assay classification measures part 2: 4D-fingerprint three-state and two-2-state logistic regression models. Li Y; Pan D; Liu J; Kern PS; Gerberick GF; Hopfinger AJ; Tseng YJ Toxicol Sci; 2007 Oct; 99(2):532-44. PubMed ID: 17675333 [TBL] [Abstract][Full Text] [Related]
13. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304 [TBL] [Abstract][Full Text] [Related]
14. Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows. Langton K; Patlewicz GY; Long A; Marchant CA; Basketter DA Contact Dermatitis; 2006 Dec; 55(6):342-7. PubMed ID: 17101009 [TBL] [Abstract][Full Text] [Related]
15. Non-enzymatic glutathione reactivity and in vitro toxicity: a non-animal approach to skin sensitization. Aptula AO; Patlewicz G; Roberts DW; Schultz TW Toxicol In Vitro; 2006 Mar; 20(2):239-47. PubMed ID: 16112535 [TBL] [Abstract][Full Text] [Related]
16. Skin sensitization: modeling based on skin metabolism simulation and formation of protein conjugates. Dimitrov SD; Low LK; Patlewicz GY; Kern PS; Dimitrova GD; Comber MH; Phillips RD; Niemela J; Bailey PT; Mekenyan OG Int J Toxicol; 2005; 24(4):189-204. PubMed ID: 16126613 [TBL] [Abstract][Full Text] [Related]
17. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714 [TBL] [Abstract][Full Text] [Related]
18. Classification study of skin sensitizers based on support vector machine and linear discriminant analysis. Ren Y; Liu H; Xue C; Yao X; Liu M; Fan B Anal Chim Acta; 2006 Jul; 572(2):272-82. PubMed ID: 17723489 [TBL] [Abstract][Full Text] [Related]
19. Structure-activity relationships for skin sensitization potential: development of structural alerts for use in knowledge-based toxicity prediction systems. Payne MP; Walsh PT J Chem Inf Comput Sci; 1994; 34(1):154-61. PubMed ID: 8144710 [TBL] [Abstract][Full Text] [Related]
20. Robust cross-validation of linear regression QSAR models. Konovalov DA; Llewellyn LE; Vander Heyden Y; Coomans D J Chem Inf Model; 2008 Oct; 48(10):2081-94. PubMed ID: 18826208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]