These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8791445)

  • 1. Shuttling between two protein conformations: the common mechanism for sensory transduction and ion transport.
    Spudich JL; Lanyi JK
    Curr Opin Cell Biol; 1996 Aug; 8(4):452-7. PubMed ID: 8791445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I.
    Bogomolni RA; Stoeckenius W; Szundi I; Perozo E; Olson KD; Spudich JL
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10188-92. PubMed ID: 7937859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transport by sensory rhodopsins and its modulation by transducer-binding.
    Sasaki J; Spudich JL
    Biochim Biophys Acta; 2000 Aug; 1460(1):230-9. PubMed ID: 10984603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins.
    Spudich JL
    Mol Microbiol; 1998 Jun; 28(6):1051-8. PubMed ID: 9680197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. His166 is critical for active-site proton transfer and phototaxis signaling by sensory rhodopsin I.
    Zhang XN; Spudich JL
    Biophys J; 1997 Sep; 73(3):1516-23. PubMed ID: 9284318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-protein interaction converts a proton pump into a sensory receptor.
    Spudich JL
    Cell; 1994 Dec; 79(5):747-50. PubMed ID: 8001113
    [No Abstract]   [Full Text] [Related]  

  • 7. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism divergence in microbial rhodopsins.
    Spudich JL; Sineshchekov OA; Govorunova EG
    Biochim Biophys Acta; 2014 May; 1837(5):546-52. PubMed ID: 23831552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Halorhodopsins: Light-Driven Chloride Pumps.
    Engelhard C; Chizhov I; Siebert F; Engelhard M
    Chem Rev; 2018 Nov; 118(21):10629-10645. PubMed ID: 29882660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of photosignaling by archaeal sensory rhodopsins.
    Hoff WD; Jung KH; Spudich JL
    Annu Rev Biophys Biomol Struct; 1997; 26():223-58. PubMed ID: 9241419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies on ion pumps of the bacterial rhodopsin family.
    Mukohata Y
    Biophys Chem; 1994 May; 50(1-2):191-201. PubMed ID: 8011934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I.
    Jung KH; Spudich JL
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6557-61. PubMed ID: 8692855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cytoplasmic domain is required for the functional interaction of SRI and HtrI in archaeal signal transduction.
    Krah M; Marwan W; Oesterhelt D
    FEBS Lett; 1994 Oct; 353(3):301-4. PubMed ID: 7957880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge.
    Spudich EN; Zhang W; Alam M; Spudich JL
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4960-5. PubMed ID: 9144172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis.
    Spudich EN; Takahashi T; Spudich JL
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7746-50. PubMed ID: 2682623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pumps, one principle: light-driven ion transport in halobacteria.
    Oesterhelt D; Tittor J
    Trends Biochem Sci; 1989 Feb; 14(2):57-61. PubMed ID: 2468194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals.
    Olson KD; Zhang XN; Spudich JL
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3185-9. PubMed ID: 7724537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototaxis of Halobacterium salinarium requires a signalling complex of sensory rhodopsin I and its methyl-accepting transducer HtrI.
    Krah M; Marwan W; Verméglio A; Oesterhelt D
    EMBO J; 1994 May; 13(9):2150-5. PubMed ID: 8187768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of bacteriorhodopsin into a chloride ion pump.
    Sasaki J; Brown LS; Chon YS; Kandori H; Maeda A; Needleman R; Lanyi JK
    Science; 1995 Jul; 269(5220):73-5. PubMed ID: 7604281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photochemical reactions of sensory rhodopsin I are altered by its transducer.
    Spudich EN; Spudich JL
    J Biol Chem; 1993 Aug; 268(22):16095-7. PubMed ID: 8344892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.