These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8792022)

  • 1. Molecular basis of skeletal muscle regeneration.
    Chambers RL; McDermott JC
    Can J Appl Physiol; 1996 Jun; 21(3):155-84. PubMed ID: 8792022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular and molecular regulation of muscle regeneration.
    Chargé SB; Rudnicki MA
    Physiol Rev; 2004 Jan; 84(1):209-38. PubMed ID: 14715915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of muscle cell growth and differentiation by the MyoD family of helix-loop-helix proteins.
    Li L; Olson EN
    Adv Cancer Res; 1992; 58():95-119. PubMed ID: 1312291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational Control of the Myogenic Program in Developing, Regenerating, and Diseased Skeletal Muscle.
    Fujita R; Crist C
    Curr Top Dev Biol; 2018; 126():67-98. PubMed ID: 29305004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Satellite and stem cells in muscle growth and repair.
    Le Grand F; Rudnicki M
    Development; 2007 Nov; 134(22):3953-7. PubMed ID: 17965049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases.
    Forcina L; Miano C; Musarò A
    Cytokine Growth Factor Rev; 2018 Jun; 41():1-9. PubMed ID: 29778303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular signature of quiescent satellite cells in adult skeletal muscle.
    Fukada S; Uezumi A; Ikemoto M; Masuda S; Segawa M; Tanimura N; Yamamoto H; Miyagoe-Suzuki Y; Takeda S
    Stem Cells; 2007 Oct; 25(10):2448-59. PubMed ID: 17600112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular control of muscle diversity and plasticity.
    Buonanno A; Rosenthal N
    Dev Genet; 1996; 19(2):95-107. PubMed ID: 8900042
    [No Abstract]   [Full Text] [Related]  

  • 9. Contribution of stem cells to skeletal muscle regeneration.
    Kawiak J; Brzóska E; Grabowska I; Hoser G; Stremińska W; Wasilewska D; Machaj EK; Pojda Z; Moraczewski J
    Folia Histochem Cytobiol; 2006; 44(2):75-9. PubMed ID: 16805130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerative capacity of skeletal muscle.
    Ehrhardt J; Morgan J
    Curr Opin Neurol; 2005 Oct; 18(5):548-53. PubMed ID: 16155438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sox15 is required for skeletal muscle regeneration.
    Lee HJ; Göring W; Ochs M; Mühlfeld C; Steding G; Paprotta I; Engel W; Adham IM
    Mol Cell Biol; 2004 Oct; 24(19):8428-36. PubMed ID: 15367664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells.
    Brzoska E; Kowalewska M; Markowska-Zagrajek A; Kowalski K; Archacka K; Zimowska M; Grabowska I; Czerwińska AM; Czarnecka-Góra M; Stremińska W; Jańczyk-Ilach K; Ciemerych MA
    Biol Cell; 2012 Dec; 104(12):722-37. PubMed ID: 22978573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration.
    Polesskaya A; Seale P; Rudnicki MA
    Cell; 2003 Jun; 113(7):841-52. PubMed ID: 12837243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of DLK1+ cells emerging during skeletal muscle remodeling in response to myositis, myopathies, and acute injury.
    Andersen DC; Petersson SJ; Jørgensen LH; Bollen P; Jensen PB; Teisner B; Schroeder HD; Jensen CH
    Stem Cells; 2009 Apr; 27(4):898-908. PubMed ID: 19353518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replicative aging down-regulates the myogenic regulatory factors in human myoblasts.
    Bigot A; Jacquemin V; Debacq-Chainiaux F; Butler-Browne GS; Toussaint O; Furling D; Mouly V
    Biol Cell; 2008 Mar; 100(3):189-99. PubMed ID: 17988214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
    Bohnert KR; McMillan JD; Kumar A
    J Cell Physiol; 2018 Jan; 233(1):67-78. PubMed ID: 28177127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Satellite cell regulation following myotrauma caused by resistance exercise.
    Vierck J; O'Reilly B; Hossner K; Antonio J; Byrne K; Bucci L; Dodson M
    Cell Biol Int; 2000; 24(5):263-72. PubMed ID: 10805959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Murray L. Barr Award Lecture. Studies of the dynamics of skeletal muscle regeneration: the mouse came back!
    Anderson JE
    Biochem Cell Biol; 1998; 76(1):13-26. PubMed ID: 9666302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.