These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 8792812)
1. A new mechanism in blue cone monochromatism. Ladekjaer-Mikkelsen AS; Rosenberg T; Jørgensen AL Hum Genet; 1996 Oct; 98(4):403-8. PubMed ID: 8792812 [TBL] [Abstract][Full Text] [Related]
2. Genetic heterogeneity among blue-cone monochromats. Nathans J; Maumenee IH; Zrenner E; Sadowski B; Sharpe LT; Lewis RA; Hansen E; Rosenberg T; Schwartz M; Heckenlively JR Am J Hum Genet; 1993 Nov; 53(5):987-1000. PubMed ID: 8213841 [TBL] [Abstract][Full Text] [Related]
3. Gene conversion between red and defective green opsin gene in blue cone monochromacy. Reyniers E; Van Thienen MN; Meire F; De Boulle K; Devries K; Kestelijn P; Willems PJ Genomics; 1995 Sep; 29(2):323-8. PubMed ID: 8666378 [TBL] [Abstract][Full Text] [Related]
4. Blue cone monochromatism: clinical findings in patients with mutations in the red/green opsin gene cluster. Kellner U; Wissinger B; Tippmann S; Kohl S; Kraus H; Foerster MH Graefes Arch Clin Exp Ophthalmol; 2004 Sep; 242(9):729-35. PubMed ID: 15069569 [TBL] [Abstract][Full Text] [Related]
5. Molecular genetics of human blue cone monochromacy. Nathans J; Davenport CM; Maumenee IH; Lewis RA; Hejtmancik JF; Litt M; Lovrien E; Weleber R; Bachynski B; Zwas F Science; 1989 Aug; 245(4920):831-8. PubMed ID: 2788922 [TBL] [Abstract][Full Text] [Related]
6. The red-green visual pigment gene region in adrenoleukodystrophy. Aubourg P; Feil R; Guidoux S; Kaplan JC; Moser H; Kahn A; Mandel JL Am J Hum Genet; 1990 Mar; 46(3):459-69. PubMed ID: 2309698 [TBL] [Abstract][Full Text] [Related]
7. Blue cone monochromatism: a phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Michaelides M; Johnson S; Simunovic MP; Bradshaw K; Holder G; Mollon JD; Moore AT; Hunt DM Eye (Lond); 2005 Jan; 19(1):2-10. PubMed ID: 15094734 [TBL] [Abstract][Full Text] [Related]
8. The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes. Jagla WM; Jägle H; Hayashi T; Sharpe LT; Deeb SS Hum Mol Genet; 2002 Jan; 11(1):23-32. PubMed ID: 11772996 [TBL] [Abstract][Full Text] [Related]
9. Number and variations of the red and green visual pigment genes in Japanese men with normal color vision. Hayashi S; Ueyama H; Tanabe S; Yamade S; Kani K Jpn J Ophthalmol; 2001; 45(1):60-7. PubMed ID: 11163047 [TBL] [Abstract][Full Text] [Related]
10. Adrenoleukodystrophy: a complex chromosomal rearrangement in the Xq28 red/green-color-pigment gene region indicates two possible gene localizations. Feil R; Aubourg P; Mosser J; Douar AM; Le Paslier D; Philippe C; Mandel JL Am J Hum Genet; 1991 Dec; 49(6):1361-71. PubMed ID: 1746561 [TBL] [Abstract][Full Text] [Related]
11. Visual pigment gene structure and the severity of color vision defects. Neitz J; Neitz M; Kainz PM Science; 1996 Nov; 274(5288):801-4. PubMed ID: 8864125 [TBL] [Abstract][Full Text] [Related]
12. Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. Deeb SS; Lindsey DT; Hibiya Y; Sanocki E; Winderickx J; Teller DY; Motulsky AG Am J Hum Genet; 1992 Oct; 51(4):687-700. PubMed ID: 1415215 [TBL] [Abstract][Full Text] [Related]
13. Bilateral macular atrophy in blue cone monochromacy (BCM) with loss of the locus control region (LCR) and part of the red pigment gene. Ayyagari R; Kakuk LE; Coats CL; Bingham EL; Toda Y; Felius J; Sieving PA Mol Vis; 1999 Jul; 5():13. PubMed ID: 10427103 [TBL] [Abstract][Full Text] [Related]
14. Spectrum of color gene deletions and phenotype in patients with blue cone monochromacy. Ayyagari R; Kakuk LE; Bingham EL; Szczesny JJ; Kemp J; Toda Y; Felius J; Sieving PA Hum Genet; 2000 Jul; 107(1):75-82. PubMed ID: 10982039 [TBL] [Abstract][Full Text] [Related]
15. An A-71C substitution in a green gene at the second position in the red/green visual-pigment gene array is associated with deutan color-vision deficiency. Ueyama H; Li YH; Fu GL; Lertrit P; Atchaneeyasakul LO; Oda S; Tanabe S; Nishida Y; Yamade S; Ohkubo I Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3357-62. PubMed ID: 12626747 [TBL] [Abstract][Full Text] [Related]
16. Analysis of fusion gene and encoded photopigment of colour-blind humans. Neitz J; Neitz M; Jacobs GH Nature; 1989 Dec; 342(6250):679-82. PubMed ID: 2574415 [TBL] [Abstract][Full Text] [Related]
17. Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. Sharpe LT; Stockman A; Jägle H; Knau H; Klausen G; Reitner A; Nathans J J Neurosci; 1998 Dec; 18(23):10053-69. PubMed ID: 9822760 [TBL] [Abstract][Full Text] [Related]
18. Protan color vision deficiency with a unique order of green-red as the first two genes of a visual pigment array. Ueyama H; Tanabe S; Muraki-Oda S; Yamade S; Ohkubo I J Hum Genet; 2006; 51(8):686-694. PubMed ID: 16874439 [TBL] [Abstract][Full Text] [Related]
19. Polymorphism in the number of genes encoding long-wavelength-sensitive cone pigments among males with normal color vision. Neitz M; Neitz J; Grishok A Vision Res; 1995 Sep; 35(17):2395-407. PubMed ID: 8594809 [TBL] [Abstract][Full Text] [Related]
20. An insertion/deletion TEX28 polymorphism and its application to analysis of red/green visual pigment gene arrays. Ueyama H; Torii R; Tanabe S; Oda S; Yamade S J Hum Genet; 2004; 49(10):548-557. PubMed ID: 15378397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]