These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 8792859)
1. Temperature dependence of retention in reversed-phase liquid chromatography on a porous acrylic support. Kamiyama F; Yamazaki K; Kawamura K; Kohara M Biomed Chromatogr; 1996; 10(3):105-10. PubMed ID: 8792859 [TBL] [Abstract][Full Text] [Related]
2. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W; Wu J; Lämmerhofer M; Lindner W J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146 [TBL] [Abstract][Full Text] [Related]
3. A thermodynamic study of retention of poly(ethylene glycol)s in liquid adsorption chromatography on reversed phases. Trathnigg B; Veronik M J Chromatogr A; 2005 Oct; 1091(1-2):110-7. PubMed ID: 16395799 [TBL] [Abstract][Full Text] [Related]
4. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides. Mizutani A; Nagase K; Kikuchi A; Kanazawa H; Akiyama Y; Kobayashi J; Annaka M; Okano T J Chromatogr A; 2010 Sep; 1217(38):5978-85. PubMed ID: 20723903 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable anionic acrylic resin based hollow microspheres of moderately water soluble drug rosiglitazone maleate: preparation and in vitro characterization. Rane BR; Gujarathi NA; Patel JK Drug Dev Ind Pharm; 2012 Dec; 38(12):1460-9. PubMed ID: 22356275 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the effect of pressure on retention of small molecules using reversed-phase ultra-high-pressure liquid chromatography. Fallas MM; Neue UD; Hadley MR; McCalley DV J Chromatogr A; 2008 Oct; 1209(1-2):195-205. PubMed ID: 18845303 [TBL] [Abstract][Full Text] [Related]
7. Temperature dependence of retention in reversed-phase liquid chromatography. 1. Stationary-phase considerations. Cole LA; Dorsey JG Anal Chem; 1992 Jul; 64(13):1317-23. PubMed ID: 1503212 [TBL] [Abstract][Full Text] [Related]
8. Study of temperature-responsibility on the surfaces of a thermo-responsive polymer modified stationary phase. Ayano E; Okada Y; Sakamoto C; Kanazawa H; Kikuchi A; Okano T J Chromatogr A; 2006 Jun; 1119(1-2):51-7. PubMed ID: 16487534 [TBL] [Abstract][Full Text] [Related]
9. Imidazoline type stationary phase for hydrophilic interaction chromatography and reversed-phase liquid chromatography. Li Y; Feng Y; Chen T; Zhang H J Chromatogr A; 2011 Sep; 1218(35):5987-94. PubMed ID: 21543075 [TBL] [Abstract][Full Text] [Related]
10. Influence of phase type and solute structure on changes in retention with pressure in reversed-phase high performance liquid chromatography. Fallas MM; Tanaka N; Buckenmaier SM; McCalley DV J Chromatogr A; 2013 Jul; 1297():37-45. PubMed ID: 23688686 [TBL] [Abstract][Full Text] [Related]
11. Monolithic column based on a poly(glycidyl methacrylate-co-4-vinylphenylboronic acid-co-ethylene dimethacrylate) copolymer for capillary liquid chromatography of small molecules and proteins. Lin Z; Huang H; Sun X; Lin Y; Zhang L; Chen G J Chromatogr A; 2012 Jul; 1246():90-7. PubMed ID: 22425210 [TBL] [Abstract][Full Text] [Related]
12. Biocompatible polymeric monoliths for protein and peptide separations. Li Y; Lee ML J Sep Sci; 2009 Oct; 32(20):3369-78. PubMed ID: 19824026 [TBL] [Abstract][Full Text] [Related]
13. Analysis of melatonin using a pH- and temperature-responsive aqueous chromatography system. Ayano E; Suzuki Y; Kanezawa M; Sakamoto C; Morita-Murase Y; Nagata Y; Kanazawa H; Kikuchi A; Okano T J Chromatogr A; 2007 Jul; 1156(1-2):213-9. PubMed ID: 17292374 [TBL] [Abstract][Full Text] [Related]
14. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode. Wu J; Bicker W; Lindner W J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572 [TBL] [Abstract][Full Text] [Related]
15. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? Lutz JF; Akdemir O; Hoth A J Am Chem Soc; 2006 Oct; 128(40):13046-7. PubMed ID: 17017772 [TBL] [Abstract][Full Text] [Related]
16. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention. Dinh NP; Jonsson T; Irgum K J Chromatogr A; 2013 Dec; 1320():33-47. PubMed ID: 24200388 [TBL] [Abstract][Full Text] [Related]
17. Retention of functional polymers in liquid adsorption chromatography: effect of the end groups in PEGs and their methyl ethers in different mobile phases. Nguyen VC; Trathnigg B J Sep Sci; 2010 Apr; 33(8):1052-7. PubMed ID: 20187029 [TBL] [Abstract][Full Text] [Related]
18. Aqueous chromatography system using pH- and temperature-responsive stationary phase with ion-exchange groups. Ayano E; Nambu K; Sakamoto C; Kanazawa H; Kikuchi A; Okano T J Chromatogr A; 2006 Jun; 1119(1-2):58-65. PubMed ID: 16460743 [TBL] [Abstract][Full Text] [Related]
19. Separation of polyethylene glycols and their fluorescein-labeled compounds depending on the hydrophobic interaction by high-performance liquid chromatography. Liu M; Xie C; Pan H; Pan J; Lu W J Chromatogr A; 2006 Sep; 1129(1):61-6. PubMed ID: 16860330 [TBL] [Abstract][Full Text] [Related]