These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8793209)

  • 1. Evidence for a megareplicon covering megabases of centromeric chromosome segments.
    Holló G; Keresö J; Praznovszky T; Cserpán I; Fodor K; Katona R; Csonka E; Fátyol K; Szeles A; Szalay AA; Hadlaczky G
    Chromosome Res; 1996 Apr; 4(3):240-7. PubMed ID: 8793209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes.
    Keresö J; Praznovszky T; Cserpán I; Fodor K; Katona R; Csonka E; Fátyol K; Holló G; Szeles A; Ross AR; Sumner AT; Szalay AA; Hadlaczky G
    Chromosome Res; 1996 Apr; 4(3):226-39. PubMed ID: 8793208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity of constitutive heterochromatin in somatic Syrian hamster chromosomes.
    Popescu NC; DiPaolo JA
    Cytogenet Cell Genet; 1979; 24(1):53-60. PubMed ID: 88308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4.
    Kumekawa N; Hosouchi T; Tsuruoka H; Kotani H
    DNA Res; 2001 Dec; 8(6):285-90. PubMed ID: 11853315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centromere positions in chicken and Japanese quail chromosomes: de novo centromere formation versus pericentric inversions.
    Zlotina A; Galkina S; Krasikova A; Crooijmans RP; Groenen MA; Gaginskaya E; Deryusheva S
    Chromosome Res; 2012 Dec; 20(8):1017-32. PubMed ID: 23143647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo chromosome formation in rodent cells.
    Praznovszky T; Keresö J; Tubak V; Cserpán I; Fátyol K; Hadlaczky G
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11042-6. PubMed ID: 1722315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence of centromere separation: separation in a quasi-stable mouse-human somatic cell hybrid.
    Vig BK; Athwal RS
    Chromosoma; 1989 Sep; 98(3):167-73. PubMed ID: 2582897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements.
    Trowell HE; Nagy A; Vissel B; Choo KH
    Hum Mol Genet; 1993 Oct; 2(10):1639-49. PubMed ID: 8268917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex structure of knobs and centromeric regions in maize chromosomes.
    Ananiev EV; Phillips RL; Rines HW
    Tsitol Genet; 2000; 34(2):11-5. PubMed ID: 10857197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characteristics of an interspecies somatic hybrid (Chinese hamster X mouse)].
    Pankova NV; Seregina TM; Mekshenkov MI
    Genetika; 1981; 17(5):940-2. PubMed ID: 7195857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-hamster hybrid cells used as models to investigate species-specific factors modulating the efficiency of repair of UV-induced DNA damage.
    Marcon F; Boei JJ; Natarajan AT
    Cytogenet Genome Res; 2004; 104(1-4):72-6. PubMed ID: 15162017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize.
    Liu Y; Su H; Pang J; Gao Z; Wang XJ; Birchler JA; Han F
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1263-71. PubMed ID: 25733907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence of centromere separation: kinetochore formation and DNA replication in dicentric chromosomes showing premature centromere separation in rat cerebral cells.
    Vig BK; Paweletz N; Schroeter D
    Cancer Genet Cytogenet; 1989 Apr; 38(2):283-96. PubMed ID: 2720640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes.
    Thompson H; Schmidt R; Brandes A; Heslop-Harrison JS; Dean C
    Mol Gen Genet; 1996 Nov; 253(1-2):247-52. PubMed ID: 9003310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The size and sequence organization of the centromeric region of arabidopsis thaliana chromosome 5.
    Kumekawa N; Hosouchi T; Tsuruoka H; Kotani H
    DNA Res; 2000 Dec; 7(6):315-21. PubMed ID: 11214966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assignment of the gene for NADH diaphorase Dia-1 to Mouse chromosome 15.
    Taggart RT; Tetri P; Francke U
    Somatic Cell Genet; 1980 Nov; 6(6):769-76. PubMed ID: 6893763
    [No Abstract]   [Full Text] [Related]  

  • 17. Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes.
    Grimes BR; Babcock J; Rudd MK; Chadwick B; Willard HF
    Genome Biol; 2004; 5(11):R89. PubMed ID: 15535865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication timing in a single human chromosome 11 transferred into the Chinese hamster ovary (CHO) cell line.
    Watanabe Y; Kazuki Y; Oshimura M; Ikemura T; Maekawa M
    Gene; 2012 Nov; 510(1):1-6. PubMed ID: 22964274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of mammalian chromosome replication. II. Evidence for the existence of defined chromosome replicating units.
    Lau YF; Arrighi FE
    Chromosoma; 1981; 83(5):721-41. PubMed ID: 7028418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAMMALIAN CHROMOSOMES IN VITRO. 18. DNA REPLICATION IN THE CHINESE HAMSTER.
    HSU TC
    J Cell Biol; 1964 Oct; 23(1):53-62. PubMed ID: 14228518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.