These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 8793729)

  • 1. Carotenoid replacement in Drosophila: freeze-fracture electron microscopy.
    Stark WS; White RH
    J Neurocytol; 1996 Apr; 25(4):233-41. PubMed ID: 8793729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opsin maturation and targeting to rhabdomeral photoreceptor membranes requires the retinal chromophore.
    Huber A; Wolfrum U; Paulsen R
    Eur J Cell Biol; 1994 Apr; 63(2):219-29. PubMed ID: 8082646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-fracture study of the Drosophila photoreceptor membrane: mutations affecting membrane particle density.
    Schinz RH; Lo MV; Larrivee DC; Pak WL
    J Cell Biol; 1982 Jun; 93(3):961-7. PubMed ID: 6811602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of photoreceptive membranes of Drosophila compound eyes as studied by quick-freezing electron microscopy.
    Suzuki E; Katayama E; Hirosawa K
    J Electron Microsc (Tokyo); 1993 Jun; 42(3):178-84. PubMed ID: 8376923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor demise from alteration of glycosylation site in Drosophila opsin: electrophysiology, microspectrophotometry, and electron microscopy.
    Brown G; Chen DM; Christianson JS; Lee R; Stark WS
    Vis Neurosci; 1994; 11(3):619-28. PubMed ID: 8038132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serial electron microscopic reconstruction of the drosophila larval eye: Photoreceptors with a rudimentary rhabdomere of microvillar-like processes.
    Hartenstein V; Yuan M; Younossi-Hartenstein A; Karandikar A; Bernardo-Garcia FJ; Sprecher S; Knust E
    Dev Biol; 2019 Sep; 453(1):56-67. PubMed ID: 31158364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster.
    Larrivee DC; Conrad SK; Stephenson RS; Pak WL
    J Gen Physiol; 1981 Nov; 78(5):521-45. PubMed ID: 6796648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of the compound eye and first optic neuropile of the photoreceptor mutant oraJK84 of Drosophila.
    Stark WS; Carlson SD
    Cell Tissue Res; 1983; 233(2):305-17. PubMed ID: 6413070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors.
    Satoh AK; O'Tousa JE; Ozaki K; Ready DF
    Development; 2005 Apr; 132(7):1487-97. PubMed ID: 15728675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for indirect control of phospholipase C (PLC-beta) by retinoids in Drosophila phototransduction.
    Shim K; Zavarella KM; Thomas CF; Shortridge RD; Stark WS
    Mol Vis; 2001 Sep; 7():216-21. PubMed ID: 11590363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Drosophila rhodopsin cytoplasmic tail domain is required for maintenance of rhabdomere structure.
    Ahmad ST; Natochin M; Artemyev NO; O'Tousa JE
    FASEB J; 2007 Feb; 21(2):449-55. PubMed ID: 17158966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common transcriptional mechanisms for visual photoreceptor cell differentiation among Pancrustaceans.
    Mahato S; Morita S; Tucker AE; Liang X; Jackowska M; Friedrich M; Shiga Y; Zelhof AC
    PLoS Genet; 2014 Jul; 10(7):e1004484. PubMed ID: 24991928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Drosophila opsin gene expression by carotenoids and retinoic acid: northern and western analyses.
    Picking WL; Chen DM; Lee RD; Vogt ME; Polizzi JL; Marietta RG; Stark WS
    Exp Eye Res; 1996 Nov; 63(5):493-500. PubMed ID: 8994352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoreceptor maintenance and degeneration in the norpA (no receptor potential-A) mutant of Drosophila melanogaster.
    Stark WS; Sapp R; Carlson SD
    J Neurogenet; 1989 Jan; 5(1):49-59. PubMed ID: 2495345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus.
    Arikawa K; Kawamata K; Suzuki T; Eguchi E
    J Comp Physiol A; 1987 Aug; 161(2):161-74. PubMed ID: 3625570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of opsin density in photoreceptor outer segments of retinoid-deprived rats.
    Katz ML; Kutryb MJ; Norberg M; Gao CL; White RH; Stark WS
    Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):1968-80. PubMed ID: 2055691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of bovine rhodopsin in Drosophila photoreceptor cells.
    Ahmad ST; Natochin M; Barren B; Artemyev NO; O'Tousa JE
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3722-8. PubMed ID: 16936079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of receptive and non-receptive plasma membrane areas of photoreceptor cells in the leech, Hirudo medicinalis.
    Walz B
    Cell Tissue Res; 1979 May; 198(2):335-48. PubMed ID: 466675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane particles and gap junctions in the retinas of two species of cephalopods, Octopus ocellatus and Sepiella japonica.
    Yamamoto M; Takasu N
    Cell Tissue Res; 1984; 237(2):209-18. PubMed ID: 6478489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1.
    Chang HY; Ready DF
    Science; 2000 Dec; 290(5498):1978-80. PubMed ID: 11110667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.