These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 8794035)

  • 21. On the durability of pyrolytic carbon in vivo.
    Haubold AD
    Med Prog Technol; 1994; 20(3-4):201-8. PubMed ID: 7877566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of sliding locus on subsurface crack formation in ultra-high-molecular-weight polyethylene knee component.
    Todo S; Tomita N; Kitakura T; Yamano Y
    Biomed Mater Eng; 1999; 9(1):13-20. PubMed ID: 10436849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material properties, biocompatibility, and wear resistance of the Medtronic pyrolytic carbon.
    Leuer LH; Gross JM; Johnson KM
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S105-9; discussion 110. PubMed ID: 8803762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status.
    Hwang NH
    J Heart Valve Dis; 1998 Mar; 7(2):140-50. PubMed ID: 9587853
    [No Abstract]   [Full Text] [Related]  

  • 25. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Failure mode of dental restorative materials under Hertzian indentation.
    Wang Y; Darvell BW
    Dent Mater; 2007 Oct; 23(10):1236-44. PubMed ID: 17184833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of an interface failure model to predict fatigue crack growth in an implanted metallic femoral stem.
    Chen J; Browne M; Taylor M; Gregson PJ
    Comput Methods Programs Biomed; 2004 Mar; 73(3):249-56. PubMed ID: 14980406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro-indentation fracture behavior of human enamel.
    Padmanabhan SK; Balakrishnan A; Chu MC; Kim TN; Cho SJ
    Dent Mater; 2010 Jan; 26(1):100-4. PubMed ID: 19796801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pure pyrolytic carbon: preparation and properties of a new material, On-X carbon for mechanical heart valve prostheses.
    Ely JL; Emken MR; Accuntius JA; Wilde DS; Haubold AD; More RB; Bokros JC
    J Heart Valve Dis; 1998 Nov; 7(6):626-32. PubMed ID: 9870196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo comparison of hemocompatibility of materials used in mechanical heart valves.
    Yang Y; Franzen SF; Olin CL
    J Heart Valve Dis; 1996 Sep; 5(5):532-7. PubMed ID: 8894994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cavitation on pyrolytic carbon in vitro.
    Haubold AD; Ely JL; Chahine GL
    J Heart Valve Dis; 1994 May; 3(3):318-23. PubMed ID: 8087272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface micromechanics of ultrahigh molecular weight polyethylene: Microindentation testing, crosslinking, and material behavior.
    Gilbert JL; Cumber J; Butterfield A
    J Biomed Mater Res; 2002 Aug; 61(2):270-81. PubMed ID: 12007208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue resistance analysis of tibial baseplate in total knee prosthesis--an in vitro biomechanical study.
    Yu TC; Huang CH; Hsieh CH; Liau JJ; Huang CH; Cheng CK
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):147-51. PubMed ID: 16246471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatigue testing of a NiTi rotary instrument. Part 2: Fractographic analysis.
    Cheung GS; Darvell BW
    Int Endod J; 2007 Aug; 40(8):619-25. PubMed ID: 17511786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation.
    Frutos E; González-Carrasco JL; Polcar T
    J Mech Behav Biomed Mater; 2016 Apr; 57():310-20. PubMed ID: 26875145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compliance calibration for fracture testing of anisotropic biological materials.
    Creel JA; Stover SM; Martin RB; Fyhrie DP; Hazelwood SJ; Gibeling JC
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):571-8. PubMed ID: 19627864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crack healing in alumina bioceramics.
    Fischer H; Weiss R; Telle R
    Dent Mater; 2008 Mar; 24(3):328-32. PubMed ID: 17644169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Fracture toughness of porcelain using indentation method].
    Ueda H; Shinya A; Tohyama Y; Yokozuka S
    Shigaku; 1990 Oct; 78(3):487-504. PubMed ID: 2134801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.