These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 8795194)
21. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Annous BA; Becker LA; Bayles DO; Labeda DP; Wilkinson BJ Appl Environ Microbiol; 1997 Oct; 63(10):3887-94. PubMed ID: 9327552 [TBL] [Abstract][Full Text] [Related]
22. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Sleator RD; Wouters J; Gahan CG; Abee T; Hill C Appl Environ Microbiol; 2001 Jun; 67(6):2692-8. PubMed ID: 11375182 [TBL] [Abstract][Full Text] [Related]
23. Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Robert H; Le Marrec C; Blanco C; Jebbar M Appl Environ Microbiol; 2000 Feb; 66(2):509-17. PubMed ID: 10653711 [TBL] [Abstract][Full Text] [Related]
24. Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles. Gerhardt PN; Tombras Smith L; Smith GM J Bacteriol; 2000 May; 182(9):2544-50. PubMed ID: 10762257 [TBL] [Abstract][Full Text] [Related]
25. Role of ctc from Listeria monocytogenes in osmotolerance. Gardan R; Duché O; Leroy-Sétrin S; Labadie J; Appl Environ Microbiol; 2003 Jan; 69(1):154-61. PubMed ID: 12513990 [TBL] [Abstract][Full Text] [Related]
26. Betaine and carnitine uptake systems in Listeria monocytogenes affect growth and survival in foods and during infection. Sleator RD; Francis GA; O'Beirne D; Gahan CG; Hill C J Appl Microbiol; 2003; 95(4):839-46. PubMed ID: 12969299 [TBL] [Abstract][Full Text] [Related]
27. Global gene expression of Listeria monocytogenes to salt stress. Bae D; Liu C; Zhang T; Jones M; Peterson SN; Wang C J Food Prot; 2012 May; 75(5):906-12. PubMed ID: 22564940 [TBL] [Abstract][Full Text] [Related]
28. Role for compatible solutes glycine betaine and L-carnitine in listerial barotolerance. Smiddy M; Sleator RD; Patterson MF; Hill C; Kelly AL Appl Environ Microbiol; 2004 Dec; 70(12):7555-7. PubMed ID: 15574960 [TBL] [Abstract][Full Text] [Related]
29. Transport of glycine-betaine by Listeria monocytogenes. Patchett RA; Kelly AF; Kroll RG Arch Microbiol; 1994; 162(3):205-10. PubMed ID: 7979875 [TBL] [Abstract][Full Text] [Related]
30. Listeria monocytogenes efficiently invades Caco-2 cells after low-temperature storage in broth and on deli meat. Larsen MH; Koch AG; Ingmer H Foodborne Pathog Dis; 2010 Sep; 7(9):1013-8. PubMed ID: 20443727 [TBL] [Abstract][Full Text] [Related]
31. Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Sleator RD; Gahan CGM ; O'Driscoll B; Hill C Int J Food Microbiol; 2000 Sep; 60(2-3):261-8. PubMed ID: 11016615 [TBL] [Abstract][Full Text] [Related]
32. The role of peptide metabolism in the growth of Listeria monocytogenes ATCC 23074 at high osmolarity. Amezaga MR; Davidson I; McLaggan D; Verheul A; Abee T; Booth IR Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():41-9. PubMed ID: 7894718 [TBL] [Abstract][Full Text] [Related]
33. An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection. Verheul A; Rombouts FM; Beumer RR; Abee T J Bacteriol; 1995 Jun; 177(11):3205-12. PubMed ID: 7768820 [TBL] [Abstract][Full Text] [Related]
34. Short communication: Evaluation of commercial meat cultures to inhibit Listeria monocytogenes in a fresh cheese laboratory model. Lawton MR; Jencarelli KG; Kozak SM; Alcaine SD J Dairy Sci; 2020 Feb; 103(2):1269-1275. PubMed ID: 31837788 [TBL] [Abstract][Full Text] [Related]
35. The sigma factor RpoN (sigma54) is involved in osmotolerance in Listeria monocytogenes. Okada Y; Okada N; Makino S; Asakura H; Yamamoto S; Igimi S FEMS Microbiol Lett; 2006 Oct; 263(1):54-60. PubMed ID: 16958851 [TBL] [Abstract][Full Text] [Related]
36. Quantifying Listeria monocytogenes prevalence and concentration in minced pork meat and estimating performance of three culture media from presence/absence microbiological testing using a deterministic and stochastic approach. Andritsos ND; Mataragas M; Paramithiotis S; Drosinos EH Food Microbiol; 2013 Dec; 36(2):395-405. PubMed ID: 24010622 [TBL] [Abstract][Full Text] [Related]
37. Influence of the sigB gene on the cold stress survival and subsequent recovery of two Listeria monocytogenes serotypes. Moorhead SM; Dykes GA Int J Food Microbiol; 2004 Feb; 91(1):63-72. PubMed ID: 14967561 [TBL] [Abstract][Full Text] [Related]
38. Role of sigma(B) in adaptation of Listeria monocytogenes to growth at low temperature. Becker LA; Evans SN; Hutkins RW; Benson AK J Bacteriol; 2000 Dec; 182(24):7083-7. PubMed ID: 11092874 [TBL] [Abstract][Full Text] [Related]
39. Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403S grown at 37 °C and 8 °C. Singh AK; Ulanov AV; Li Z; Jayaswal RK; Wilkinson BJ Int J Food Microbiol; 2011 Aug; 148(2):107-14. PubMed ID: 21645939 [TBL] [Abstract][Full Text] [Related]
40. Expression of cellular antigens of Listeria monocytogenes that react with monoclonal antibodies C11E9 and EM-7G1 under acid-, salt- or temperature-induced stress environments. Geng T; Kim KP; Gomez R; Sherman DM; Bashir R; Ladisch MR; Bhunia AK J Appl Microbiol; 2003; 95(4):762-72. PubMed ID: 12969290 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]