BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 8795276)

  • 1. Synthesis and tryptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1577-9. PubMed ID: 8795276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypsin-catalyzed peptide synthesis and various p-guanidinophenyl esters as acyl donors.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1585-7. PubMed ID: 8795277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile synthesis of p- and m-(amidinomethyl)phenyl esters derived from amino acid and tryptic hydrolysis of these synthetic inverse substrates.
    Sekizaki H; Itoh K; Shibuya A; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1514-7. PubMed ID: 17917298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic peptide synthesis with p-guanidinophenyl and p-(guanidinomethyl)phenyl esters as acyl donors.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1998 May; 46(5):846-9. PubMed ID: 9621419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypsin-catalyzed peptide synthesis with m-guanidinophenyl and m-(guanidinomethyl)phenyl esters as acyl donor component.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Amino Acids; 1999; 17(3):285-91. PubMed ID: 10582127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypsin-specific acyl-4-guanidinophenyl esters for alpha-chymotrypsin-catalysed reactions computational predictions, hydrolyses, and peptide bond formation.
    Günther R; Thust S; Hofmann HJ; Bordusa F
    Eur J Biochem; 2000 Jun; 267(12):3496-501. PubMed ID: 10848965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and kinetic characterisation of omega-guanidinocarbonic acid ethyl esters as trypsin substrates.
    Schuster M; Medvedkin VN; Schellenberger V; Mitin YuV ; Jakubke HD
    Biomed Biochim Acta; 1990; 49(6):519-21. PubMed ID: 2275728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiomeric specificity at the deacylation process of tryptic catalysis.
    Tanizawa K; Yamada H; Kanaoka Y
    Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (E)-stereoselectivity and their conformational analysis in peptides.
    Mali SM; Bandyopadhyay A; Jadhav SV; Kumar MG; Gopi HN
    Org Biomol Chem; 2011 Oct; 9(19):6566-74. PubMed ID: 21826295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fairly marked enantioselectivity for the hydrolysis of amino acid esters by chemically modified enzymes.
    Yano Y; Shimada K; Okai J; Goto K; Matsumoto Y; Ueoka R
    J Org Chem; 2003 Feb; 68(4):1314-8. PubMed ID: 12585870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protease-catalyzed peptide synthesis for the site-specific incorporation of alpha-fluoroalkyl amino acids into peptides.
    Thust S; Koksch B
    J Org Chem; 2003 Mar; 68(6):2290-6. PubMed ID: 12636393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates".
    Fujioka T; Tanizawa K; Kanaoka Y
    J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides.
    Ganesh Kumar M; Mali SM; Gopi HN
    Org Biomol Chem; 2013 Feb; 11(5):803-13. PubMed ID: 23229177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of peptide esters by different enzymes.
    Reissmann S; Greiner G
    Int J Pept Protein Res; 1992 Aug; 40(2):110-3. PubMed ID: 1446967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-free, direct conversion of α-amino acids into α-keto γ-amino esters for the synthesis of α,γ-peptides.
    Hernández D; Boto A; Guzmán D; Alvarez E
    Org Biomol Chem; 2017 Sep; 15(37):7736-7742. PubMed ID: 28872167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of industrial protease "Alcalase" in peptide synthesis.
    Chen ST; Chen SY; Hsiao SC; Wang KT
    Biomed Biochim Acta; 1991; 50(10-11):S181-6. PubMed ID: 1820041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic Strategies for the Preparation of Pharmaceutically Important Amino Acids through Hydrolysis of Amino Carboxylic Esters and Lactams.
    Forró E; Fülöp F
    Curr Med Chem; 2022; 29(41):6218-6227. PubMed ID: 35850648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation.
    Zheng JS; Chang HN; Wang FL; Liu L
    J Am Chem Soc; 2011 Jul; 133(29):11080-3. PubMed ID: 21714552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtilisin-catalyzed synthesis of amino acid and peptide esters. Application in a two-step enzymatic ligation strategy.
    Liu CF; Tam JP
    Org Lett; 2001 Dec; 3(26):4157-9. PubMed ID: 11784166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.