These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 8795569)
1. The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells. Berg K; Anholt H; Bech O; Moan J Br J Cancer; 1996 Sep; 74(5):688-97. PubMed ID: 8795569 [TBL] [Abstract][Full Text] [Related]
2. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Gaullier JM; Berg K; Peng Q; Anholt H; Selbo PK; Ma LW; Moan J Cancer Res; 1997 Apr; 57(8):1481-6. PubMed ID: 9108449 [TBL] [Abstract][Full Text] [Related]
3. Protoporphyrin IX accumulation in cells treated with 5-aminolevulinic acid: dependence on cell density, cell size and cell cycle. Moan J; Bech O; Gaullier JM; Stokke T; Steen HB; Ma LW; Berg K Int J Cancer; 1998 Jan; 75(1):134-9. PubMed ID: 9426701 [TBL] [Abstract][Full Text] [Related]
4. A comparative study on the enhancement efficacy of specific and non-specific iron chelators for protoporphyrin IX production and photosensitization in HaCat cells. Xia Y; Huang Y; Lin L; Liu X; Jiang S; Xiong L J Huazhong Univ Sci Technolog Med Sci; 2009 Dec; 29(6):765-70. PubMed ID: 20037824 [TBL] [Abstract][Full Text] [Related]
5. Metabolic characterization of tumor cell-specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells. Krieg RC; Messmann H; Rauch J; Seeger S; Knuechel R Photochem Photobiol; 2002 Nov; 76(5):518-25. PubMed ID: 12462647 [TBL] [Abstract][Full Text] [Related]
6. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Iinuma S; Farshi SS; Ortel B; Hasan T Br J Cancer; 1994 Jul; 70(1):21-8. PubMed ID: 8018536 [TBL] [Abstract][Full Text] [Related]
7. Biochemical manipulation via iron chelation to enhance porphyrin production from porphyrin precursors. Curnow A; Pye A J Environ Pathol Toxicol Oncol; 2007; 26(2):89-103. PubMed ID: 17725535 [TBL] [Abstract][Full Text] [Related]
8. The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study. Chang SC; MacRobert AJ; Porter JB; Bown SG J Photochem Photobiol B; 1997 Apr; 38(2-3):114-22. PubMed ID: 9203372 [TBL] [Abstract][Full Text] [Related]
9. Direct comparison of delta-aminolevulinic acid and methyl-aminolevulinate-derived protoporphyrin IX accumulations potentiated by desferrioxamine or the novel hydroxypyridinone iron chelator CP94 in cultured human cells. Pye A; Curnow A Photochem Photobiol; 2007; 83(3):766-73. PubMed ID: 17576385 [TBL] [Abstract][Full Text] [Related]
10. The pH dependency of protoporphyrin IX formation in cells incubated with 5-aminolevulinic acid. Bech O; Berg K; Moan J Cancer Lett; 1997 Feb; 113(1-2):25-9. PubMed ID: 9065797 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Ohgari Y; Nakayasu Y; Kitajima S; Sawamoto M; Mori H; Shimokawa O; Matsui H; Taketani S Biochem Pharmacol; 2005 Dec; 71(1-2):42-9. PubMed ID: 16288996 [TBL] [Abstract][Full Text] [Related]
12. Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX. Noodt BB; Berg K; Stokke T; Peng Q; Nesland JM Br J Cancer; 1996 Jul; 74(1):22-9. PubMed ID: 8679453 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of protoporphyrin-IX (PpIX) in leukemic cell lines following induction by 5-aminolevulinic acid (ALA). Bartosová J; Hrkal Z Comp Biochem Physiol C Toxicol Pharmacol; 2000 Jul; 126(3):245-52. PubMed ID: 11048674 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Renal Cell Carcinoma Cell Response to the Enhancement of 5-aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence by Iron Chelator Deferoxamine Howley R; Mansi M; Shinde J; Restrepo J; Chen B Photochem Photobiol; 2023 Mar; 99(2):787-792. PubMed ID: 35857390 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment. Briel-Pump A; Beez T; Ebbert L; Remke M; Weinhold S; Sabel MC; Sorg RV J Photochem Photobiol B; 2018 Dec; 189():298-305. PubMed ID: 30445362 [TBL] [Abstract][Full Text] [Related]
16. Improving in vitro photodynamic therapy through the development of a novel iron chelating aminolaevulinic acid prodrug. Curnow A; Perry A; Wood M Photodiagnosis Photodyn Ther; 2019 Mar; 25():157-165. PubMed ID: 30553949 [TBL] [Abstract][Full Text] [Related]
18. An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy. Anayo L; Magnussen A; Perry A; Wood M; Curnow A Lasers Surg Med; 2018 Jul; 50(5):552-565. PubMed ID: 29603761 [TBL] [Abstract][Full Text] [Related]
19. Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX accumulation in human urothelial carcinomas. Inoue K; Karashima T; Kamada M; Shuin T; Kurabayashi A; Furihata M; Fujita H; Utsumi K; Sasaki J Pathobiology; 2009; 76(6):303-14. PubMed ID: 19955842 [TBL] [Abstract][Full Text] [Related]
20. Influence of a haematoporphyrin derivative on the protoporphyrin IX synthesis and photodynamic effect after 5-aminolaevulinic acid sensitization in human colon carcinoma cells. Messmann H; Geisler M; Gross U; Abels C; Szeimies RM; Steinbach P; Knüchel R; Doss M; Schölmerich J; Holstege A Br J Cancer; 1997; 76(7):878-83. PubMed ID: 9328146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]