BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8796314)

  • 1. Studies of binding sites in the subtilisin from Bacillus lentus by means of site directed mutagenesis and kinetic investigations.
    Grøn H; Bech LM; Sørensen SB; Meldal M; Breddam K
    Adv Exp Med Biol; 1996; 379():105-12. PubMed ID: 8796314
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural changes leading to increased enzymatic activity in an engineered variant of Bacillus lentus subtilisin.
    Bott R; Dauberman J; Wilson L; Ganshaw G; Sagar H; Graycar T; Estell D
    Adv Exp Med Biol; 1996; 379():277-83. PubMed ID: 8796332
    [No Abstract]   [Full Text] [Related]  

  • 3. Significance of hydrophobic S4-P4 interactions in subtilisin 309 from Bacillus lentus.
    Bech LM; Sørensen SB; Breddam K
    Biochemistry; 1993 Mar; 32(11):2845-52. PubMed ID: 8457550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of amino acid deletion in subtilisin E, based on structural comparison with a microbial alkaline elastase, on its substrate specificity and catalysis.
    Takagi H; Arafuka S; Inouye M; Yamasaki M
    J Biochem; 1992 May; 111(5):584-8. PubMed ID: 1639753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus.
    DeSantis G; Berglund P; Stabile MR; Gold M; Jones JB
    Biochemistry; 1998 Apr; 37(17):5968-73. PubMed ID: 9558332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a novel specificity in subtilisin BPN'.
    Rheinnecker M; Baker G; Eder J; Fersht AR
    Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly active and oxidation-resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification.
    Grøn H; Bech LM; Branner S; Breddam K
    Eur J Biochem; 1990 Dec; 194(3):897-901. PubMed ID: 2269308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate specificity of natural variants and genetically engineered intermediates of Bacillus lentus alkaline proteases.
    Maurer KH; Markgraf M; Goddette D
    Adv Exp Med Biol; 1996; 379():243-56. PubMed ID: 8796329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins.
    Mulder FA; Schipper D; Bott R; Boelens R
    J Mol Biol; 1999 Sep; 292(1):111-23. PubMed ID: 10493861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Bacillus lentus subtilisins having altered flexibility.
    Graycar T; Knapp M; Ganshaw G; Dauberman J; Bott R
    J Mol Biol; 1999 Sep; 292(1):97-109. PubMed ID: 10493860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity limitations.
    DeSantis G; Shang X; Jones JB
    Biochemistry; 1999 Oct; 38(40):13391-7. PubMed ID: 10529215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combinatorial approach to chemical modification of subtilisin Bacillus lentus.
    Plettner E; Khumtaveeporn K; Shang X; Jones JB
    Bioorg Med Chem Lett; 1998 Sep; 8(17):2291-6. PubMed ID: 9873530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of autoproteolytic cleavage site in the Asp-49 mutant subtilisin J by site-directed mutagenesis.
    Jang JS; Park DK; Chun M; Byun SM
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):233-5. PubMed ID: 8448190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein engineering on subtilisin.
    Takagi H
    Int J Biochem; 1993 Mar; 25(3):307-12. PubMed ID: 8462720
    [No Abstract]   [Full Text] [Related]  

  • 16. Active-site titration of serine proteases using a fluoride ion selective electrode and sulfonyl fluoride inhibitors.
    Hsia CY; Ganshaw G; Paech C; Murray CJ
    Anal Biochem; 1996 Nov; 242(2):221-7. PubMed ID: 8937565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional consequences of engineering the high alkaline serine protease PB92.
    van der Laan JM; Misset O; Mulleners LJ; Gerritse G; Scheffers HN; van Schouwen DJ; Teplyakov AV; Dijkstra BW
    Adv Exp Med Biol; 1996; 379():203-18. PubMed ID: 8796325
    [No Abstract]   [Full Text] [Related]  

  • 18. Bacillus licheniformis variant DY proteinase: specificity in relation to the geometry of the substrate recognition site.
    Georgieva DN; Genov N; Betzel C
    Curr Microbiol; 2005 Aug; 51(2):71-4. PubMed ID: 16049665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.
    Ruan B; London V; Fisher KE; Gallagher DT; Bryan PN
    Biochemistry; 2008 Jun; 47(25):6628-36. PubMed ID: 18507395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites.
    Davis BG; Khumtaveeporn K; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2303-11. PubMed ID: 10632040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.