BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8796318)

  • 1. Fluorescence decay of tryptophans in serine proteinases from microorganisms: relation to X-ray models.
    Genov N; Nikolov P; Betzel C; Wilson K
    Adv Exp Med Biol; 1996; 379():141-5. PubMed ID: 8796318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramolecular distances between tryptophan residues and the active-site serine residue in alkaline bacterial proteinases as measured by fluorescence energy-transfer studies.
    Genov NC; Shopova M; Boteva R; Ricchelli F; Jori G
    Biochem J; 1983 Nov; 215(2):413-6. PubMed ID: 6418143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence properties of native and photooxidised proteinase K: the X-ray model in the region of the two tryptophans.
    Dolashka P; Dimov I; Genov N; Svendsen I; Wilson KS; Betzel C
    Biochim Biophys Acta; 1992 Feb; 1118(3):303-12. PubMed ID: 1737054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence properties of subtilisins and related proteinases (subtilases): relation to X-ray models.
    Genov N; Nicolov P; Betzel C; Wilson K; Dolashka P
    J Photochem Photobiol B; 1993 May; 18(2-3):265-72. PubMed ID: 8350192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quenching of the tyrosyl and tryptophyl fluorescence of subtilisins Carlsberg and Novo by iodide.
    Brown MF; Omar S; Raubach RA; Schleich T
    Biochemistry; 1977 Mar; 16(5):987-92. PubMed ID: 843526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Bacillus lentus subtilisins having altered flexibility.
    Graycar T; Knapp M; Ganshaw G; Dauberman J; Bott R
    J Mol Biol; 1999 Sep; 292(1):97-109. PubMed ID: 10493860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution.
    Betzel C; Klupsch S; Papendorf G; Hastrup S; Branner S; Wilson KS
    J Mol Biol; 1992 Jan; 223(2):427-45. PubMed ID: 1738156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus.
    van der Laan JM; Teplyakov AV; Kelders H; Kalk KH; Misset O; Mulleners LJ; Dijkstra BW
    Protein Eng; 1992 Jul; 5(5):405-11. PubMed ID: 1518788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state and time-resolved fluorescence of Esperase: comparison with the X-ray structure in the region of the two tryptophans.
    Georgieva DN; Nikolov P; Betzel C
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 Aug; 54A(8):1109-16. PubMed ID: 9698945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catalytic site of serine proteinases as a specific binding cavity for xenon.
    Schiltz M; Fourme R; Broutin I; Prangé T
    Structure; 1995 Mar; 3(3):309-16. PubMed ID: 7788296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.
    Maeda H; Mizutani O; Yamagata Y; Ichishima E; Nakajima T
    J Biochem; 2001 May; 129(5):675-82. PubMed ID: 11328588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics.
    Sigtryggsdóttir AR; Papaleo E; Thorbjarnardóttir SH; Kristjánsson MM
    Biochim Biophys Acta; 2014 Apr; 1844(4):705-12. PubMed ID: 24561657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex between the subtilisin from a mesophilic bacterium and the leech inhibitor eglin-C.
    Dauter Z; Betzel C; Genov N; Pipon N; Wilson KS
    Acta Crystallogr B; 1991 Oct; 47 ( Pt 5)():707-30. PubMed ID: 1793542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence technique for comparative studies of substrate-binding subsites in serine proteinases. Application to subtilisins.
    Genov NC; Boteva RN
    Biochem J; 1986 Sep; 238(3):923-6. PubMed ID: 3541918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins.
    Mulder FA; Schipper D; Bott R; Boelens R
    J Mol Biol; 1999 Sep; 292(1):111-23. PubMed ID: 10493861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg.
    Eschenburg S; Genov N; Peters K; Fittkau S; Stoeva S; Wilson KS; Betzel C
    Eur J Biochem; 1998 Oct; 257(2):309-18. PubMed ID: 9826175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific fluorescent derivatives of macromolecules. A fluorescence study of some specifically modified derivatives of chymotrypsin, trypsin and subtilisin.
    Vaz WL; Schoellmann G
    Biochim Biophys Acta; 1976 Jul; 439(1):206-18. PubMed ID: 952953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of subtilisins and related proteinases (subtilases).
    Genov N; Filippi B; Dolashka P; Wilson KS; Betzel C
    Int J Pept Protein Res; 1995 Apr; 45(4):391-400. PubMed ID: 7601614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus licheniformis variant DY proteinase: specificity in relation to the geometry of the substrate recognition site.
    Georgieva DN; Genov N; Betzel C
    Curr Microbiol; 2005 Aug; 51(2):71-4. PubMed ID: 16049665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of the alkaline proteases savinase and esperase from Bacillus lentus.
    Betzel C; Klupsch S; Branner S; Wilson KS
    Adv Exp Med Biol; 1996; 379():49-61. PubMed ID: 8796310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.