BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8796322)

  • 1. Random mutagenesis of the weak calcium binding site in subtilisin Carlsberg and screening for thermostability by temperature-gradient gel electrophoresis.
    Sättler A; Kanka S; Schrörs W; Riesner D
    Adv Exp Med Biol; 1996; 379():171-82. PubMed ID: 8796322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis.
    Sättler A; Kanka S; Maurer KH; Riesner D
    Electrophoresis; 1996 Apr; 17(4):784-92. PubMed ID: 8738345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-gradient gel electrophoresis for analysis and screening of thermostable proteases.
    Sättler A; Riesner D
    Electrophoresis; 1993 Aug; 14(8):782-8. PubMed ID: 8404822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the weak Ca(2+)-binding site of subtilisin J by site-directed mutagenesis on heat stability.
    Jang JS; Bae KH; Byun SM
    Biochem Biophys Res Commun; 1992 Oct; 188(1):184-9. PubMed ID: 1358066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold.
    Narinx E; Baise E; Gerday C
    Protein Eng; 1997 Nov; 10(11):1271-9. PubMed ID: 9514115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.
    Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN
    J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced stability of subtilisin by three point mutations.
    Narhi LO; Stabinsky Y; Levitt M; Miller L; Sachdev R; Finley S; Park S; Kolvenbach C; Arakawa T; Zukowski M
    Biotechnol Appl Biochem; 1991 Feb; 13(1):12-24. PubMed ID: 2054102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of the high-affinity calcium binding site in pro-subtilisin E with the insertion sequence IS1 of pro-Tk-subtilisin.
    Uehara R; Angkawidjaja C; Koga Y; Kanaya S
    Biochemistry; 2013 Dec; 52(50):9080-8. PubMed ID: 24279884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein engineering of subtilisins to improve stability in detergent formulations.
    von der Osten C; Branner S; Hastrup S; Hedegaard L; Rasmussen MD; Bisgård-Frantzen H; Carlsen S; Mikkelsen JM
    J Biotechnol; 1993 Mar; 28(1):55-68. PubMed ID: 7763525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis.
    Rollence ML; Filpula D; Pantoliano MW; Bryan PN
    Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis.
    Jang JS; Kang DO; Chun MJ; Byun SM
    Biochem Biophys Res Commun; 1992 Apr; 184(1):277-82. PubMed ID: 1567435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'.
    Braxton S; Wells JA
    Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of a useful enzyme (subtilisin BPN') by an experimental evolution system.
    Tange T; Taguchi S; Kojima S; Miura K; Momose H
    Appl Microbiol Biotechnol; 1994 Apr; 41(2):239-44. PubMed ID: 7764834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn of subtilisin Carlsberg increase the catalytic rate and decrease thermostability.
    Fuchita N; Arita S; Ikuta J; Miura M; Shimomura K; Motoshima H; Watanabe K
    Biochim Biophys Acta; 2012 Apr; 1824(4):620-6. PubMed ID: 22326746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme.
    Schülein R; Kreft J; Gonski S; Goebel W
    Mol Gen Genet; 1991 May; 227(1):137-43. PubMed ID: 1904534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg.
    Eschenburg S; Genov N; Peters K; Fittkau S; Stoeva S; Wilson KS; Betzel C
    Eur J Biochem; 1998 Oct; 257(2):309-18. PubMed ID: 9826175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, characterization and structure of subtilisin from a thermostable Bacillus subtilis isolate.
    Kamal M; Höög JO; Kaiser R; Shafqat J; Razzaki T; Zaidi ZH; Jörnvall H
    FEBS Lett; 1995 Nov; 374(3):363-6. PubMed ID: 7589571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermostability of the single-Cys mutant subtilisin E under oxidizing conditions.
    Takagi H; Hirai K; Wada M; Nakamori S
    J Biochem; 2000 Oct; 128(4):585-9. PubMed ID: 11011140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.