BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8796439)

  • 41. Thermal resistance of Bacillus stearothermophilus spores in different heating systems containing some approved food additives.
    López M; Mazas M; González I; González J; Bernardo A
    Lett Appl Microbiol; 1996 Sep; 23(3):187-91. PubMed ID: 8862025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Testing thermal death data for significant nonlograithmic behavior.
    HUMPHREY AE; NICKERSON JT
    Appl Microbiol; 1961 Jul; 9(4):282-6. PubMed ID: 13716807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions.
    Mtimet N; Trunet C; Mathot AG; Venaille L; Leguérinel I; Coroller L; Couvert O
    Food Microbiol; 2017 Jun; 64():126-134. PubMed ID: 28213016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Method for the immobilization of bacterial spores in alginate gel.
    Dallyn H; Falloon WC; Bean PG
    Lab Pract; 1977 Oct; 26(10):773-5. PubMed ID: 599891
    [No Abstract]   [Full Text] [Related]  

  • 45. Effect of storage temperature on the lag time of Geobacillus stearothermophilus individual spores.
    Kakagianni M; Aguirre JS; Lianou A; Koutsoumanis KP
    Food Microbiol; 2017 Oct; 67():76-84. PubMed ID: 28648296
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Heat resistance of "Bacillus subtilis" and "Bacillus stearothermophilus" spores in ethylene glycol, propylene glycol and butylene glycol solutions. Criticism of the use of thermodynamic parameters (author's transl)].
    Cerf O; L'Haridon R; Hermier J
    Ann Microbiol (Paris); 1975 Jan; 126(1):23-38. PubMed ID: 811145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The evaluation of the recovery capacity of media for heat-treated Bacillus stearothermophilus spore strips.
    Brown GD; Gaze JE
    Int J Food Microbiol; 1988 Oct; 7(2):109-14. PubMed ID: 3275315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of different water-insoluble anorganic salts on the resistance and storage time of Bacillus stearothermophilus spores used for biological indicators.
    Müller HE
    Zentralbl Hyg Umweltmed; 1994 Dec; 196(4):360-6. PubMed ID: 7748440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal Resistance of Bacillus stearothermophilus Spores Heated in Acidified Mushroom Extract.
    Fernandez PS; Ocio MJ; Sanchez T; Martinez A
    J Food Prot; 1994 Jan; 57(1):37-41. PubMed ID: 31113017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.
    Spicher G; Peters J; Borchers U
    Zentralbl Hyg Umweltmed; 1999 Feb; 201(6):541-53. PubMed ID: 10084207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29.
    Bibi Z; Qader SA; Aman A
    Extremophiles; 2015 Jul; 19(4):819-27. PubMed ID: 26001519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Some hygienic problems in the production of meat and bone meal from slaughterhouse offal and animal carcasses.
    Riedinger O; Strauch D
    Ann Ist Super Sanita; 1978; 14(2):213-9. PubMed ID: 115352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of air on the moist-heat resistance of Bacillus stearothermophilus spores.
    Scruton MW
    J Hosp Infect; 1989 Nov; 14(4):339-50. PubMed ID: 2575633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations.
    Rozali SNM; Milani EA; Deed RC; Silva FVM
    Int J Food Microbiol; 2017 Dec; 263():17-25. PubMed ID: 29024903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heat resistance of Bacillus spores exposed to food processing conditions.
    Pendurkar SH; Kulkarni PR
    Nahrung; 1990; 34(2):177-80. PubMed ID: 2366857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal inactivation kinetics of Bacillus stearothermophilus spores using a linear temperature program.
    Leontidis S; Fernández A; Rodrigo C; Fernández PS; Magraner L; Martínez A
    J Food Prot; 1999 Aug; 62(8):958-61. PubMed ID: 10456754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of superheated steam on Geobacillus stearothermophilus spore viability.
    Head DS; Cenkowski S; Holley R; Blank G
    J Appl Microbiol; 2008 Apr; 104(4):1213-20. PubMed ID: 18028361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The release of dipicolinic acid during heating and its relation to the heat destruction of Bacillus stearothermophilus spores.
    Mallidis CG; Scholefield JS
    J Appl Bacteriol; 1985 Nov; 59(5):479-86. PubMed ID: 4086410
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains.
    Wright AM; Hoxey EV; Soper CJ; Davies DJ
    J Appl Bacteriol; 1995 Oct; 79(4):432-8. PubMed ID: 7592136
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials.
    Caldwell JM; Pérez-Díaz IM; Sandeep KP; Simunovic J; Harris K; Osborne JA; Hassan HM
    J Food Sci; 2015 Aug; 80(8):M1804-14. PubMed ID: 26235411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.