BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 8797157)

  • 1. Morphological analysis of vagal input to gastrin releasing peptide and vasoactive intestinal peptide containing neurons in the rat glandular stomach.
    Berthoud HR
    J Comp Neurol; 1996 Jun; 370(1):61-70. PubMed ID: 8797157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide-containing nerve fibers in the stomach wall of rat and mouse.
    Ekblad E; Ekelund M; Graffner H; HÃ¥kanson R; Sundler F
    Gastroenterology; 1985 Jul; 89(1):73-85. PubMed ID: 2408958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical demonstration of vagal input to nicotinamide acetamide dinucleotide phosphate diaphorase-positive (nitrergic) neurons in rat fundic stomach.
    Berthoud HR
    J Comp Neurol; 1995 Jul; 358(3):428-39. PubMed ID: 7560296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor.
    Berthoud HR; Powley TL
    J Comp Neurol; 1992 May; 319(2):261-76. PubMed ID: 1522247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastrin releasing peptides increase Fos-like immunoreactivity in the enteric nervous system and the dorsal vagal complex.
    Washington MC; Sayegh AI
    Peptides; 2011 Aug; 32(8):1600-5. PubMed ID: 21745514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical analysis of neurons and their projections in the proximal colon of the guinea-pig.
    Messenger JP
    Arch Histol Cytol; 1993 Dec; 56(5):459-74. PubMed ID: 7510507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vagal-enteric interface: vagal activation-induced expression of c-Fos and p-CREB in neurons of the upper gastrointestinal tract and pancreas.
    Berthoud HR; Patterson LM; Zheng H
    Anat Rec; 2001 Jan; 262(1):29-40. PubMed ID: 11146426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurochemical coding and projection patterns of gastrin-releasing peptide-immunoreactive myenteric neurone subpopulations in the guinea-pig gastric fundus.
    Pfannkuche H; Firzlaff U; Sann H; Reiche D; Schemann M
    J Chem Neuroanat; 2000 Jun; 19(2):93-104. PubMed ID: 10936745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of vagal efferent fibers and putative target neurons in the enteric nervous system of the rat.
    Kirchgessner AL; Gershon MD
    J Comp Neurol; 1989 Jul; 285(1):38-53. PubMed ID: 2568999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributions of neuropeptides in the human esophagus.
    Wattchow DA; Furness JB; Costa M; O'Brien PE; Peacock M
    Gastroenterology; 1987 Dec; 93(6):1363-71. PubMed ID: 2445618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunocytochemical analysis of potential neurotransmitters present in the myenteric plexus and muscular layers of the corpus of the guinea pig stomach.
    Mawe GM; Schemann M; Wood JD; Gershon MD
    Anat Rec; 1989 Jul; 224(3):431-42. PubMed ID: 2476950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and colocalization of NADPH-diaphorase activity, nitric oxide synthase immunoreactivity, and VIP immunoreactivity in the newly hatched chicken gut.
    Balaskas C; Saffrey MJ; Burnstock G
    Anat Rec; 1995 Sep; 243(1):10-8. PubMed ID: 8540623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system.
    Liu S; Gao N; Hu HZ; Wang X; Wang GD; Fang X; Gao X; Xia Y; Wood JD
    J Comp Neurol; 2006 Jan; 494(1):63-74. PubMed ID: 16304680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct synaptic contacts on the myenteric ganglia of the rat stomach from the dorsal motor nucleus of the vagus.
    Hayakawa T; Kuwahara S; Maeda S; Tanaka K; Seki M
    J Comp Neurol; 2006 Sep; 498(3):352-62. PubMed ID: 16871527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pituitary adenylate cyclase activating polypeptide (PACAP) in the gastrointestinal tract of the rat: distribution and effects of capsaicin or denervation.
    Hannibal J; Ekblad E; Mulder H; Sundler F; Fahrenkrug J
    Cell Tissue Res; 1998 Jan; 291(1):65-79. PubMed ID: 9394044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in colocalization between Fos and PHI, GRP, VIP and VP in neurons of the rat suprachiasmatic nucleus after a light stimulus during the phase delay versus the phase advance period of the night.
    Romijn HJ; Sluiter AA; Pool CW; Wortel J; Buijs RM
    J Comp Neurol; 1996 Aug; 372(1):1-8. PubMed ID: 8841917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of vasoactive intestinal polypeptide-like immunoreactive structures projecting from the myenteric ganglion of the stomach to the celiac ganglion revealed by a double-labelling technique.
    Lee Y; Shiosaka S; Hayashi N; Tohyama M
    Brain Res; 1986 Sep; 382(2):392-4. PubMed ID: 2428447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The longitudinal smooth muscle layer of the pig small intestine is innervated by both myenteric and submucous neurons.
    Hens J; Gajda M; Scheuermann DW; Adriaensen D; Timmermans JP
    Histochem Cell Biol; 2002 Jun; 117(6):481-92. PubMed ID: 12107499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migration of the myoelectric complex after interruption of the myenteric plexus: intestinal transection and regeneration of enteric nerves in the guinea pig.
    Galligan JJ; Furness JB; Costa M
    Gastroenterology; 1989 Nov; 97(5):1135-46. PubMed ID: 2571545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagal preganglionic projections to the enteric nervous system characterized with Phaseolus vulgaris-leucoagglutinin.
    Holst MC; Kelly JB; Powley TL
    J Comp Neurol; 1997 Apr; 381(1):81-100. PubMed ID: 9087421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.