These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 8797233)

  • 1. Butylphenyl-dGTP as a structural probe of B family DNA polymerases.
    Stattel JM; Wright GE
    Postepy Biochem; 1995; 41(5 Suppl):332-7. PubMed ID: 8797233
    [No Abstract]   [Full Text] [Related]  

  • 2. Sensitivity of bacteriophage RB69 DNA polymerase to N2-(p-n-butylphenyl)-2'-deoxyguanosine nucleotides.
    Stattel JM; Wright GE
    Nucleosides Nucleotides; 1999 Oct; 18(10):2193-9. PubMed ID: 10616725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biochemical study of N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-(alpha,beta-imido)triphosphate (BuPdGMPNHPP): a non-substrate inhibitor of B family DNA polymerases.
    Stattel JM; Yanachkov I; Wright GE
    Nucleosides Nucleotides; 1998 Aug; 17(8):1505-13. PubMed ID: 9672707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication.
    Illana B; Blanco L; Salas M
    J Mol Biol; 1996 Dec; 264(3):453-64. PubMed ID: 8969297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Getting a grip on how DNA polymerases function.
    Patel PH; Loeb LA
    Nat Struct Biol; 2001 Aug; 8(8):656-9. PubMed ID: 11473246
    [No Abstract]   [Full Text] [Related]  

  • 6. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and erroneous incorporation of oxidized DNA precursors by human DNA polymerase eta.
    Shimizu M; Gruz P; Kamiya H; Masutani C; Xu Y; Usui Y; Sugiyama H; Harashima H; Hanaoka F; Nohmi T
    Biochemistry; 2007 May; 46(18):5515-22. PubMed ID: 17439242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portraits of a Y-family DNA polymerase.
    Yang W
    FEBS Lett; 2005 Feb; 579(4):868-72. PubMed ID: 15680965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanism for all polymerases.
    Steitz TA
    Nature; 1998 Jan; 391(6664):231-2. PubMed ID: 9440683
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases.
    Kuroita T; Matsumura H; Yokota N; Kitabayashi M; Hashimoto H; Inoue T; Imanaka T; Kai Y
    J Mol Biol; 2005 Aug; 351(2):291-8. PubMed ID: 16019029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of polymerase inhibitors as antiviral drugs.
    Oberg B
    Antiviral Res; 2006 Sep; 71(2-3):90-5. PubMed ID: 16820225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penicilliols A and B, novel inhibitors specific to mammalian Y-family DNA polymerases.
    Kimura T; Takeuchi T; Kumamoto-Yonezawa Y; Ohashi E; Ohmori H; Masutani C; Hanaoka F; Sugawara F; Yoshida H; Mizushina Y
    Bioorg Med Chem; 2009 Mar; 17(5):1811-6. PubMed ID: 19223184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β,γ-CHF- and β,γ-CHCl-dGTP diastereomers: synthesis, discrete 31P NMR signatures, and absolute configurations of new stereochemical probes for DNA polymerases.
    Wu Y; Zakharova VM; Kashemirov BA; Goodman MF; Batra VK; Wilson SH; McKenna CE
    J Am Chem Soc; 2012 May; 134(21):8734-7. PubMed ID: 22397499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational study of the hydrolysis of dGTP analogues with halomethylene-modified leaving groups in solution: implications for the mechanism of DNA polymerases.
    Kamerlin SC; McKenna CE; Goodman MF; Warshel A
    Biochemistry; 2009 Jun; 48(25):5963-71. PubMed ID: 19391628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical amino acids in human DNA polymerases eta and kappa involved in erroneous incorporation of oxidized nucleotides.
    Katafuchi A; Sassa A; Niimi N; Grúz P; Fujimoto H; Masutani C; Hanaoka F; Ohta T; Nohmi T
    Nucleic Acids Res; 2010 Jan; 38(3):859-67. PubMed ID: 19939936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of DNA polymerases.
    Rothwell PJ; Waksman G
    Adv Protein Chem; 2005; 71():401-40. PubMed ID: 16230118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs.
    Lee CH; Chandani S; Loechler EL
    J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus.
    Kim SW; Kim DU; Kim JK; Kang LW; Cho HS
    Int J Biol Macromol; 2008 May; 42(4):356-61. PubMed ID: 18355915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly conserved Tyrosine residue of family B DNA polymerases contributes to dictate translesion synthesis past 8-oxo-7,8-dihydro-2'-deoxyguanosine.
    de Vega M; Salas M
    Nucleic Acids Res; 2007; 35(15):5096-107. PubMed ID: 17652324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.