BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8797378)

  • 1. Microelectrodes for the measurement of catecholamines in biological systems.
    Cahill PS; Walker QD; Finnegan JM; Mickelson GE; Travis ER; Wightman RM
    Anal Chem; 1996 Sep; 68(18):3180-6. PubMed ID: 8797378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.
    Pihel K; Walker QD; Wightman RM
    Anal Chem; 1996 Jul; 68(13):2084-9. PubMed ID: 9027223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration.
    Venton BJ; Troyer KP; Wightman RM
    Anal Chem; 2002 Feb; 74(3):539-46. PubMed ID: 11838672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved surface-patterned platinum microelectrodes for the study of exocytotic events.
    Berberian K; Kisler K; Fang Q; Lindau M
    Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells.
    Gao Y; Chen X; Gupta S; Gillis KD; Gangopadhyay S
    Biomed Microdevices; 2008 Oct; 10(5):623-9. PubMed ID: 18493856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical imaging of fusion pore openings by electrochemical detector arrays.
    Hafez I; Kisler K; Berberian K; Dernick G; Valero V; Yong MG; Craighead HG; Lindau M
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13879-84. PubMed ID: 16172395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous amperometric measurement of ascorbate and catecholamine secretion from individual bovine adrenal medullary cells.
    Cahill PS; Wightman RM
    Anal Chem; 1995 Aug; 67(15):2599-605. PubMed ID: 8849026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines.
    Hermans A; Seipel AT; Miller CE; Wightman RM
    Langmuir; 2006 Feb; 22(5):1964-9. PubMed ID: 16489775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a 32 μm diameter carbon fiber electrode for in vivo fast-scan cyclic voltammetry.
    Chadchankar H; Yavich L
    J Neurosci Methods; 2012 Nov; 211(2):218-26. PubMed ID: 22995525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes.
    Qi L; Thomas E; White SH; Smith SK; Lee CA; Wilson LR; Sombers LA
    Anal Chem; 2016 Aug; 88(16):8129-36. PubMed ID: 27441547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes.
    Runnels PL; Joseph JD; Logman MJ; Wightman RM
    Anal Chem; 1999 Jul; 71(14):2782-9. PubMed ID: 10424168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo.
    Xie K; Wang N; Lin X; Wang Z; Zhao X; Fang P; Yue H; Kim J; Luo J; Cui S; Yan F; Shi P
    Elife; 2020 Feb; 9():. PubMed ID: 32043970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain.
    Kawagoe KT; Wightman RM
    Talanta; 1994 Jun; 41(6):865-74. PubMed ID: 18966011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for low detection limit measurements with cyclic voltammetry.
    Wiedemann DJ; Kawagoe KT; Kennedy RT; Ciolkowski EL; Wightman RM
    Anal Chem; 1991 Dec; 63(24):2965-70. PubMed ID: 1789456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells.
    Gao Y; Bhattacharya S; Chen X; Barizuddin S; Gangopadhyay S; Gillis KD
    Lab Chip; 2009 Dec; 9(23):3442-6. PubMed ID: 19904414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre 'dident' microelectrodes.
    Pennington JM; Millar J; L Jones CP; Owesson CA; McLaughlin DP; Stamford JA
    J Neurosci Methods; 2004 Dec; 140(1-2):5-13. PubMed ID: 15589328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential voltammetric measurement of catecholamines and ascorbic acid at surface-modified carbon filament microelectrodes.
    Plotsky PM
    Brain Res; 1982 Mar; 235(1):179-84. PubMed ID: 7188324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.