These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 8797378)

  • 21. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells.
    Wightman RM; Schroeder TJ; Finnegan JM; Ciolkowski EL; Pihel K
    Biophys J; 1995 Jan; 68(1):383-90. PubMed ID: 7711264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secretion of catecholamines from individual adrenal medullary chromaffin cells.
    Leszczyszyn DJ; Jankowski JA; Viveros OH; Diliberto EJ; Near JA; Wightman RM
    J Neurochem; 1991 Jun; 56(6):1855-63. PubMed ID: 2027003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo.
    Vreeland RF; Atcherley CW; Russell WS; Xie JY; Lu D; Laude ND; Porreca F; Heien ML
    Anal Chem; 2015 Mar; 87(5):2600-7. PubMed ID: 25692657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting in vivo electrochemistry: electrode-tissue interaction and the ascorbate amplification effect.
    Echizen H; Freed CR
    Life Sci; 1986 Jul; 39(1):77-89. PubMed ID: 2425210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis.
    Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD
    Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical detection of exocytosis at single rat melanotrophs.
    Paras CD; Kennedy RT
    Anal Chem; 1995 Oct; 67(20):3633-7. PubMed ID: 8644916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flame etching enhances the sensitivity of carbon-fiber microelectrodes.
    Strand AM; Venton BJ
    Anal Chem; 2008 May; 80(10):3708-15. PubMed ID: 18416534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical detection of histamine and 5-hydroxytryptamine at isolated mast cells.
    Pihel K; Hsieh S; Jorgenson JW; Wightman RM
    Anal Chem; 1995 Dec; 67(24):4514-21. PubMed ID: 8633786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new way for the analysis of the exocytosis.
    Sánchez JL; Brioso MA; Segura F; Borges R
    Stud Health Technol Inform; 1999; 68():400-5. PubMed ID: 10724915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes.
    Shao Z; Venton BJ
    J Electrochem Soc; 2022 Feb; 169(2):. PubMed ID: 35221350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y
    Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons.
    Zhou Z; Misler S
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6938-42. PubMed ID: 7624348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boron-doped diamond microelectrodes for use in capillary electrophoresis with electrochemical detection.
    Cvacka J; Quaiserová V; Park J; Show Y; Muck A; Swain GM
    Anal Chem; 2003 Jun; 75(11):2678-87. PubMed ID: 12948136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of nanomolar dopamine diffusion using low-noise perfluorinated ionomer coated carbon fiber microelectrodes and high-speed cyclic voltammetry.
    Rice ME; Nicholson C
    Anal Chem; 1989 Sep; 61(17):1805-10. PubMed ID: 2802146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells.
    Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R
    Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new technique for measuring the temporal characteristics of the carbon fibre microelectrodes in in vivo voltammetry at millisecond time intervals.
    Yavich L
    J Neurosci Methods; 1998 Oct; 84(1-2):29-32. PubMed ID: 9821630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes.
    Li X; Majdi S; Dunevall J; Fathali H; Ewing AG
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):11978-82. PubMed ID: 26266819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon powder-filled microelectrode: An easy-to-fabricate probe for cellular electrochemistry.
    Tsujimura A; Kamae Y; Kawasaki H; Nagai H; Kano M; Tabata T
    Anal Biochem; 2021 Sep; 629():114316. PubMed ID: 34314725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals.
    el Ganouni S; Forni C; Nieoullon A
    Brain Res; 1987 Feb; 404(1-2):239-56. PubMed ID: 3494483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands.
    Picollo F; Battiato A; Bernardi E; Marcantoni A; Pasquarelli A; Carbone E; Olivero P; Carabelli V
    Anal Chem; 2016 Aug; 88(15):7493-9. PubMed ID: 27376596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.