These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8797378)

  • 41. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.
    Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ
    Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new sensitive and simple method for detection of catecholamines from adrenal chromaffin cells.
    Ghindilis AL; Michael N; Makower A
    Pharmazie; 1995 Sep; 50(9):599-600. PubMed ID: 7480095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast-scan voltammetry of cyclic nitroxide free radicals.
    Baur JE; Wang S; Brandt MC
    Anal Chem; 1996 Nov; 68(21):3815-21. PubMed ID: 21619257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ferricyanide-backfilled cylindrical carbon fiber microelectrodes for in vivo analysis with high stability and low polarized potential.
    Zhong P; Yu P; Wang K; Hao J; Fei J; Mao L
    Analyst; 2015 Nov; 140(21):7154-9. PubMed ID: 26378690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity.
    Heien ML; Phillips PE; Stuber GD; Seipel AT; Wightman RM
    Analyst; 2003 Dec; 128(12):1413-9. PubMed ID: 14737224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. beta-Sonogel-carbon electrodes: a new alternative for the electrochemical determination of catecholamines.
    Izaoumen N; Cubillana-Aguilera LM; Naranjo-Rodríguez I; de Cisneros JL; Bouchta D; Temsamani KR; Palacios-Santander JM
    Talanta; 2009 Apr; 78(2):370-6. PubMed ID: 19203597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes.
    Roberts JG; Moody BP; McCarty GS; Sombers LA
    Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images.
    Tedjo W; Nejad JE; Feeny R; Yang L; Henry CS; Tobet S; Chen T
    Biosens Bioelectron; 2018 Aug; 114():78-88. PubMed ID: 29783145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative chemical analysis of single cells.
    Heien ML; Ewing AG
    Methods Mol Biol; 2009; 544():153-62. PubMed ID: 19488699
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microelectrodes with gold nanoparticles and self-assembled monolayers for in vivo recording of striatal dopamine.
    Tsai TC; Guo CX; Han HZ; Li YT; Huang YZ; Li CM; Chen JJ
    Analyst; 2012 Jun; 137(12):2813-20. PubMed ID: 22577657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving data acquisition for fast-scan cyclic voltammetry.
    Michael DJ; Joseph JD; Kilpatrick MR; Travis ER; Wightman RM
    Anal Chem; 1999 Sep; 71(18):3941-7. PubMed ID: 10500480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of extracellular basal levels of serotonin in vivo using nafion-coated carbon fibre electrodes combined with differential pulse voltammetry.
    Crespi F; Martin KF; Marsden CA
    Neuroscience; 1988 Dec; 27(3):885-96. PubMed ID: 3252175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips.
    Chen P; Xu B; Tokranova N; Feng X; Castracane J; Gillis KD
    Anal Chem; 2003 Feb; 75(3):518-24. PubMed ID: 12585478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of cytosolic Ca2+ and exocytosis responses from single rat and bovine chromaffin cells.
    Finnegan JM; Borges R; Wightman RM
    Neuroscience; 1996 Apr; 71(3):833-43. PubMed ID: 8867052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A baseline drift detrending technique for fast scan cyclic voltammetry.
    DeWaele M; Oh Y; Park C; Kang YM; Shin H; Blaha CD; Bennet KE; Kim IY; Lee KH; Jang DP
    Analyst; 2017 Nov; 142(22):4317-4321. PubMed ID: 29063091
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations.
    Sasso L; Heiskanen A; Diazzi F; Dimaki M; Castillo-León J; Vergani M; Landini E; Raiteri R; Ferrari G; Carminati M; Sampietro M; Svendsen WE; Emnéus J
    Analyst; 2013 Jul; 138(13):3651-9. PubMed ID: 23628978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.
    Smith AR; Garris PA; Casto JM
    J Chem Neuroanat; 2015; 66-67():28-39. PubMed ID: 25900708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of size-controllable ultrasmall-disk electrode: monitoring single vesicle release kinetics at tiny structures with high spatio-temporal resolution.
    Li ZY; Zhou W; Wu ZX; Zhang RY; Xu T
    Biosens Bioelectron; 2009 Jan; 24(5):1358-64. PubMed ID: 18804366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells.
    Zhou Z; Misler S; Chow RH
    Biophys J; 1996 Mar; 70(3):1543-52. PubMed ID: 8785312
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Voltammetry of extracellular dopamine in rat striatum during ICSS-like electrical stimulation of the medial forebrain bundle.
    Young SD; Michael AC
    Brain Res; 1993 Jan; 600(2):305-7. PubMed ID: 8435753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.